Scene Division-based Spatio-temporal Updating Mixture Gaussian Model for Moving Target Detection

被引:3
|
作者
Wang, Zhonghua [1 ,2 ]
Cheng, Chuanyang [1 ]
Yang, Jingyi [1 ]
机构
[1] Nanchang Hangkong Univ, Sch Informat Engn, Nanchang 330063, Jiangxi, Peoples R China
[2] Ahead Software Co Ltd, Nanchang 330041, Jiangxi, Peoples R China
关键词
Target detection; Gaussian distribution; Mixture gaussian model; OBJECT DETECTION;
D O I
10.1145/3185089.3185127
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Since the traditional mixture gaussian model nonfully utilize the background distribution information in time and space, in this paper, the scene division method is used to segment the scene into the background stable regions and background disturbance regions, and a spatio-temporal stochastic updating method is proposed. Under the premise that the background disturbance areas are correctly identified as the background, the spatio-temporal stochastic updating mechanism can make the pixels in the scene have a reasonably renewal time, and then improve the detection precision of the moving target. The experiment shows that compared with the classical mixture gaussian model, the improved mixture gaussian model has the better performance of moving target detection.
引用
收藏
页码:169 / 172
页数:4
相关论文
共 50 条
  • [41] Spatio-Temporal Traffic Scene Modeling for Object Motion Detection
    Hao, JiuYue
    Li, Chao
    Kim, Zuwhan
    Xiong, Zhang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2013, 14 (01) : 295 - 302
  • [42] Spatio-Temporal Attention Model for Foreground Detection in Cross-Scene Surveillance Videos
    Liang, Dong
    Pan, Jiaxing
    Sun, Han
    Zhou, Huiyu
    SENSORS, 2019, 19 (23)
  • [43] Adaptive background mixture model with spatio-temporal samples
    Guo, Pengyu
    Zhu, Xiaozhou
    Zhang, Hui
    Zhang, Xiaohu
    OPTIK, 2019, 183 : 433 - 440
  • [44] Color Detection and Segmentation of the Scene Based on Gaussian Mixture Model Clustering
    Ye, Huiying
    Zheng, Lin
    Liu, Pengfei
    PROCEEDINGS OF 2017 IEEE 7TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC), 2017, : 503 - 506
  • [45] Target tracking for mobile robot based on Spatio-Temporal Context model
    Jia, Songmin
    Xuan, Xuan
    Xu, Tao
    Zhang, Peng
    Dong, Zhenyin
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 976 - 981
  • [46] STDMANet: Spatio-Temporal Differential Multiscale Attention Network for Small Moving Infrared Target Detection
    Yan, Puti
    Hou, Runze
    Duan, Xuguang
    Yue, Chengfei
    Wang, Xin
    Cao, Xibin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [47] Event-based incremental updating of spatio-temporal database
    Zhao, XG
    Chen, J
    Jiang, J
    Zhu, JJ
    Li, ZL
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2004, 11 (02): : 192 - 198
  • [48] Event-based incremental updating of spatio-temporal database
    Zhou X.-G.
    Chen J.
    Jiang J.
    Zhu J.-J.
    Li Z.-L.
    Journal of Central South University of Technology, 2004, 11 (2): : 192 - 198
  • [49] Event-based incremental updating of spatio-temporal database
    周晓光
    陈军
    蒋捷
    朱建军
    李志林
    Journal of Central South University of Technology(English Edition), 2004, (02) : 192 - 198
  • [50] Gaussian Process-based Spatio-Temporal Predictor
    Varga, Balazs
    ACTA POLYTECHNICA HUNGARICA, 2022, 19 (05) : 69 - 84