An asymptotically linear Schrodinger-Poisson system on R3

被引:8
|
作者
Zhu, Hongbo [1 ]
机构
[1] Guangdong Univ Technol, Sch Appl Math, Guangzhou 510006, Peoples R China
关键词
Schrodinger-Poisson system; Mountain Pass Theorem; Asymptotically linear; KLEIN-GORDON-MAXWELL; POSITIVE SOLUTIONS; EQUATION; STATES;
D O I
10.1016/j.na.2012.04.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following nonlinear Schrodinger-Poisson equation -Delta u + beta u + lambda phi u = f(x, u)u, x is an element of R-3, -Delta phi = u(2), lim(vertical bar x vertical bar ->infinity) phi(x) = 0, where u, phi : R-3 -> R are positive functions, the parameters beta, lambda > 0, f (x, s) tend to p(x) and q(x) is an element of L-infinity (R-3), respectively, as s -> 0 and s -> +infinity. Under some simple assumptions on f (x, s), we give existence and nonexistence results, depending on the parameters beta and lambda. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5261 / 5269
页数:9
相关论文
共 50 条
  • [21] A SIGN-CHANGING SOLUTION FOR THE SCHRODINGER-POISSON EQUATION IN R3
    Alves, Claudianor O.
    Souto, Marco A. S.
    Soares, Sergio H. M.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (01) : 1 - 25
  • [22] Ground state solutions for an asymptotically 2-linear Schrodinger-Poisson system
    Yin, Li-Feng
    Wu, Xing-Ping
    Tang, Chun-Lei
    APPLIED MATHEMATICS LETTERS, 2019, 87 : 7 - 12
  • [23] Asymptotically linear Schrodinger-Poisson systems with potentials vanishing at infinity
    Zhu, Hongbo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) : 501 - 510
  • [24] Normalized solutions for critical Schrodinger-Poisson system involving p-Laplacian in R3
    Xiao, Di
    Nguyen, Thin Van
    Liang, Sihua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (01):
  • [25] Bound state nodal solutions for the non-autonomous Schrodinger-Poisson system in R3
    Sun, Juntao
    Wu, Tsung-fang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (11) : 7121 - 7163
  • [26] Existence and Asymptotic Behavior of Solutions for a Quasilinear Schrodinger-Poisson System in R3 with a General Nonlinearity
    Wei, Chongqing
    Li, Anran
    Zhao, Leiga
    FRONTIERS OF MATHEMATICS, 2025, 20 (01): : 43 - 66
  • [27] Ground states for asymptotically linear fractional Schrodinger-Poisson systems
    Chen, Peng
    Liu, Xiaochun
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2021, 12 (01)
  • [28] Multiplicity of Positive Solutions for Schrodinger-Poisson Systems with a Critical Nonlinearity in R3
    Xie, Weihong
    Chen, Haibo
    Shi, Hongxia
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2657 - 2680
  • [29] Nonexistence Results for the Schrodinger-Poisson Equations with Spherical and Cylindrical Potentials in R3
    Jiang, Yongsheng
    Zhou, Yanli
    Wiwatanapataphee, B.
    Ge, Xiangyu
    ABSTRACT AND APPLIED ANALYSIS, 2013, : 1 - 6
  • [30] Existence and concentration of positive solutions for semilinear Schrodinger-Poisson systems in R3
    Wang, Jun
    Tian, Lixin
    Xu, Junxiang
    Zhang, Fubao
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 48 (1-2) : 243 - 273