Neural Differentiation of Rat Adipose-Derived Stem Cells in Vitro

被引:38
|
作者
Ying, Chengcheng [1 ]
Hu, Wanli [1 ]
Cheng, Bei [2 ]
Zheng, Xinmin [1 ]
Li, Shiwen [1 ]
机构
[1] Wuhan Univ, Dept Urol, Zhongnan Hosp, Wuhan 430071, Peoples R China
[2] Wuhan Univ, Dept Anat & Embryol, Sch Med, Wuhan 430071, Peoples R China
关键词
Mesenchymal stem cells; Adipose-derived stem cells; Neuronal differentiation; Neuron-like cells; ERECTILE FUNCTION; STROMAL CELLS; TISSUE; RESTORATION; RECOVERY; URINARY; MURINE; MODEL;
D O I
10.1007/s10571-012-9850-2
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
It is reported that adipose-derived stem cells (ADSCs) had multilineage differentiation potential, and could differentiate into neuron-like cells induced by special induction media, which may provide a new idea for restoration of erectile dysfunction (ED) after cavernous nerve injury. The aim of this research was to explore the neuronal differentiation potential of ADSCs in vitro. ADSCs isolated from inguinal adipose tissue of rat were characterized by flow cytometry, and results showed that ADSCs were positive for mesenchymal stem cell markers CD90 and CD44, but negative for hematopoietic stem cell markers. ADSCs maintained self-renewing capacity and could differentiate into adipocytes and neurocytes under special culture condition. In this research, two methods were used to induce ADSCs. In method 1, ADSCs were treated with the preinduction medium including epithelium growth factor, basic fibroblast growth factor, and brain derived neurotrophic factor (BDNF) for 3 days, then with the neurogenic induction medium containing isobutylmethylxanthine, indomethacin, and insulin. While in method 2, BDNF was not used to treat ADSCs. After induction, neuronal differentiation of ADSCs was evaluated. Neuronal markers, glial fibrillary acidic protein (GFAP), and beta-tubulin III (Tuj-1) were detected by immunofluorescence and Western Blot analyses. The expressions of GFAP and Tuj-1 in method 1 were obviously higher then those in method 2. In addition, the positive rate of the neuron-like cells was higher in method 1. It suggested that ADSCs are able to differentiate into neural-like cells in vitro, and the administration of BDNF in the preinduction medium may provide a new way to modify the culture method for getting more neuron-like cells in vitro.
引用
收藏
页码:1255 / 1263
页数:9
相关论文
共 50 条
  • [41] The Biomolecular Basis of Adipogenic Differentiation of Adipose-Derived Stem Cells
    Scioli, Maria Giovanna
    Bielli, Alessandra
    Gentile, Pietro
    Mazzaglia, Donatella
    Cervelli, Valerio
    Orlandi, Augusto
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (04) : 6517 - 6526
  • [42] Epigenetic regulation of human adipose-derived stem cells differentiation
    Kristina Daniunaite
    Inga Serenaite
    Roberta Misgirdaite
    Juozas Gordevicius
    Ausra Unguryte
    Sandrine Fleury-Cappellesso
    Eiva Bernotiene
    Sonata Jarmalaite
    Molecular and Cellular Biochemistry, 2015, 410 : 111 - 120
  • [43] Chondrogenic differentiation of human adipose-derived mesenchymal stem cells
    Merceron, C.
    Vinatier, C.
    Masson, M.
    Guiguand, L.
    Amiaud, J.
    Cherel, Y.
    Poupon, M.
    Weiss, P.
    Guicheux, J.
    BONE, 2007, 40 (06) : S172 - S172
  • [44] The Proliferation and Differentiation of Adipose-Derived Stem Cells in Neovascularization and Angiogenesis
    Hutchings, Greg
    Janowicz, Krzysztof
    Moncrieff, Lisa
    Dompe, Claudia
    Strauss, Ewa
    Kocherova, Ievgeniia
    Nawrocki, Mariusz J.
    Kruszyna, Lukasz
    Wasiatycz, Grzegorz
    Antosik, Pawel
    Shibli, Jamil A.
    Mozdziak, Paul
    Perek, Bartlomiej
    Krasinski, Zbigniew
    Kempisty, Bartosz
    Nowicki, Michal
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (11)
  • [45] Chondrogenic differentiation of human adipose-derived mesenchymal stem cells
    Merceron, C.
    Vinatier, C.
    Masson, M.
    Guigand, L.
    Amiaud, J.
    Cherel, Y.
    Poupon, M.
    Weiss, P.
    Guicheux, J.
    CALCIFIED TISSUE INTERNATIONAL, 2007, 80 : S54 - S55
  • [46] Isolation, Characterization, Differentiation, and Application of Adipose-Derived Stem Cells
    Kuhbier, Jorn W.
    Weyand, Birgit
    Radtke, Christine
    Vogt, Peter M.
    Kasper, Cornelia
    Reimers, Kerstin
    BIOREACTOR SYSTEMS FOR TISSUE ENGINEERING II: STRATEGIES FOR THE EXPANISON AND DIRECTED DIFFERENTIATION OF STEM CELLS, 2010, 123 : 55 - 105
  • [47] Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells
    Trumbull, Andrew
    Subramanian, Gayathri
    Yildirim-Ayan, Eda
    BIOMEDICAL ENGINEERING ONLINE, 2016, 15
  • [48] Adipogenic Differentiation of Adipose-Derived Stem Cells on Collagen Microbeads
    Kim, Inok
    Park, Hyejin
    Shin, Yuna
    Kim, Mihuyng
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2009, 6 (4-11) : 924 - 930
  • [49] Differentiation of adipose-derived stem cells to a Schwann cell phenotype
    Kingham, P. J.
    Kalbermatten, D. F.
    Mahay, D.
    Armstrong, S. J.
    Wiberg, M.
    Terenghi, G.
    TISSUE ENGINEERING, 2007, 13 (07): : 1675 - 1675