Group partitions of minimal size

被引:2
|
作者
Garonzi, Martino [1 ]
Dias, Michell Lucena [1 ]
机构
[1] Univ Brasilia, Dept Matemat, Campus Univ Darcy Ribeiro, BR-70910900 Brasilia, DF, Brazil
关键词
Group theory; Finite groups; Partitions; Frobenius groups; Group covers; COVERINGS;
D O I
10.1016/j.jalgebra.2019.04.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A cover of a finite group G is a family of proper subgroups of G whose union is G, and a cover is called minimal if it is a cover of minimal cardinality. A partition of G is a cover such that the intersection of any two of its members is {1}. In this paper we determine all finite groups that admit a minimal cover that is also a partition. We prove that this happens if and only if G is isomorphic to C-p x C-p for some prime p or to a Frobenius group with Frobenius kernel being an abelian minimal normal subgroup and Frobenius complement cyclic. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [21] Maximal irredundant families of minimal size in the alternating group
    Martino Garonzi
    Andrea Lucchini
    Archiv der Mathematik, 2019, 113 : 119 - 126
  • [22] The largest size of a minimal generating set of a finite group
    Andrea Lucchini
    Archiv der Mathematik, 2013, 101 : 1 - 8
  • [23] Maximal irredundant families of minimal size in the alternating group
    Garonzi, Martino
    Lucchini, Andrea
    ARCHIV DER MATHEMATIK, 2019, 113 (02) : 119 - 126
  • [24] The largest size of a minimal generating set of a finite group
    Lucchini, Andrea
    ARCHIV DER MATHEMATIK, 2013, 101 (01) : 1 - 8
  • [25] THE GROUP-SIZE COHESION RELATIONSHIP IN MINIMAL GROUPS
    CARRON, AV
    SPINK, KS
    SMALL GROUP RESEARCH, 1995, 26 (01) : 86 - 105
  • [26] Group Actions on Partitions
    Kim, Byungchan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [27] NODAL MINIMAL PARTITIONS IN DIMENSION 3
    Helffer, Bernard
    Hoffmann-Ostenhof, Thomas
    Terracini, Susanna
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (02) : 617 - 635
  • [28] MINIMAL RECTANGULAR PARTITIONS OF DIGITIZED BLOBS
    FERRARI, L
    SANKAR, PV
    SKLANSKY, J
    COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1984, 28 (01): : 58 - 71
  • [29] Spectral Minimal Partitions for a Family of Tori
    Bonnaillie-Noel, Virginie
    Lena, Corentin
    EXPERIMENTAL MATHEMATICS, 2017, 26 (04) : 381 - 395
  • [30] On a magnetic characterization of spectral minimal partitions
    Helffer, B.
    Hoffmann-Ostenhof, T.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (06) : 2081 - 2092