PFRNet: Dual-Branch Progressive Fusion Rectification Network for Monaural Speech Enhancement

被引:12
|
作者
Yu, Runxiang [1 ,2 ]
Zhao, Ziwei [1 ,2 ]
Ye, Zhongfu [1 ,2 ]
机构
[1] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230027, Anhui, Peoples R China
[2] Natl Engn Res Ctr Speech & Language Informat Proc, Hefei 230027, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Transformers; Speech enhancement; Tensors; Convolution; Decoding; Time-frequency analysis; Fusion rectification block; interactive time-frequency improved transformer; monaural speech enhancement;
D O I
10.1109/LSP.2022.3222045
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, the transformer-based dual-branch magnitude and complex spectrum estimation framework achieves state-of-the-art performance for monaural speech enhancement. However, the insufficient utilization of the interactive information in the middle layers makes each branch lack the ability of compensation and rectification. To address this problem, this letter proposes a novel dual-branch progressive fusion rectification network (PFRNet) for monaural speech enhancement. PFRNet is an encoder-decoder-based dual-branch structure with interactive improved real & complex transformers. In PFRNet, the fusion rectification block is proposed to convert the implicit relationship of the two branches into a fusion feature by the frequency-domain mutual attention mechanism. The fusion feature provides a platform for the interaction in the middle layers. The interactive time-frequency improved real & complex transformer can make better use of the long-term dependencies in the time-frequency domain. Experimental results show that the proposed PFRNet outperforms most advanced dual-branch speech enhancement approaches and previous advanced systems in terms of speech quality and intelligibility.
引用
收藏
页码:2358 / 2362
页数:5
相关论文
共 50 条
  • [41] A Dual-Branch Fusion of a Graph Convolutional Network and a Convolutional Neural Network for Hyperspectral Image Classification
    Yang, Pan
    Zhang, Xinxin
    SENSORS, 2024, 24 (14)
  • [42] A dual-branch network for ultrasound image segmentation
    Zhu, Zhiqin
    Zhang, Zimeng
    Qi, Guanqiu
    Li, Yuanyuan
    Li, Yuzhen
    Mu, Lan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 103
  • [43] Incremental Learning Based on Dual-Branch Network
    Dong, Mingda
    Zhang, Zhizhong
    Xie, Yuan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 263 - 272
  • [44] Dual-Branch Enhanced Network for Change Detection
    Zhang, Hongrui
    Qu, Shaocheng
    Li, Huan
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (03) : 3459 - 3471
  • [45] Dual-branch network with fused Mel features for logic-manipulated speech detection
    Yang, Haitao
    Yan, Xiai
    Wang, Huapeng
    APPLIED ACOUSTICS, 2024, 222
  • [46] Parallel Dual-Branch Polyp Segmentation Network
    Sun, Kunjie
    Cheng, Li
    Yuan, Haiwen
    Li, Xuan
    IEEE ACCESS, 2024, 12 : 192051 - 192061
  • [47] Dual-Branch Enhanced Network for Change Detection
    Hongrui Zhang
    Shaocheng Qu
    Huan Li
    Arabian Journal for Science and Engineering, 2022, 47 : 3459 - 3471
  • [48] A dual-branch residual network for inhomogeneous dehazing
    Xu, Yifei
    Li, Jingjing
    Wei, Pingping
    Wang, Aichen
    Rao, Yuan
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 102
  • [49] A Nonintrusive Load Identification Method Based on Dual-Branch Attention GRU Fusion Network
    Yuan, Jie
    Jin, Ran
    Wang, Lidong
    Wang, Ting
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [50] DEF-Net: A novel dual-branch efficient fusion network for polyp segmentation
    Zhai, Chenxu
    Song, Mengqiu
    Yang, Lei
    Liang, Kui
    Liu, Yanhong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 102