PATTERN RECOGNITION OF EEG SIGNAL DURING MOTOR IMAGERY BY USING SOM

被引:0
|
作者
Yamaguchi, Tomonari [1 ]
Nagala, Koichi [1 ]
Truong, Pham Quang [1 ]
Fujio, Mitsuhiko [1 ]
Inoue, Katsuhiro [1 ]
Pfurtscheller, Gert [2 ]
机构
[1] Kyushu Inst Technol, Dept Syst Design & Informat, Fukuoka 8208502, Japan
[2] Graz Univ Technol, Lab Brain Comp Interface, A-8010 Graz, Austria
关键词
EEG; AR-model; Brain computer interface; Motor imagery; SOM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electroencephalograph (EEG) recordings during Tight and left hand motor imagery can be used to move a cursor to a target on a computer screen. Such an EEG-based brain-computer interface (BCI) can provide a new communication channel to replace an impaired motor function. It, can be used by e.g., handicap users with amyotrophic lateral sclerosis (ALS). The conventional method purposes the recognition of right hand and left, hand motor imagery. In this work, feature extraction method based on Self Organizing Maps (SOM) using auto-regressive (AR) spectrum was introduced to discriminate the EEG signals recorded during Tight hand, left hand and foot motor imagery. Map structure is investigated in order to develop a BCI system which extracts physically meaningful information directly relevant to motor imagery. The analysis methods of EEG signals are discussed through the experimental studies.
引用
收藏
页码:2617 / 2630
页数:14
相关论文
共 50 条
  • [31] CNN models for EEG motor imagery signal classification
    Mahmoud Alnaanah
    Moutz Wahdow
    Mohd Alrashdan
    Signal, Image and Video Processing, 2023, 17 : 825 - 830
  • [32] Motor Imagery EEG Classification using Wavelet Common Spatial Boosting Pattern
    Liu, Shaobo
    Sun, Fuchun
    Zhang, Wenchang
    Tan, Chuanqi
    5TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE APPLICATIONS AND TECHNOLOGIES (ACSAT 2017), 2017, : 118 - 124
  • [33] EEG Signal Processing Using Deep Learning for Motor Imagery Tasks: Leveraging Signal Images
    Amran, Husna Najeha
    Markom, Marni Azira
    Awang, Saidatul Ardeenawatie
    Adom, Abdul Hamid
    Tan, Erdy Sulino Mohd Muslim
    Markom, Arni Munira
    6TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, ICOBE 2023, 2025, 115 : 93 - 108
  • [34] CNN models for EEG motor imagery signal classification
    Alnaanah, Mahmoud
    Wahdow, Moutz
    Alrashdan, Mohd
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (03) : 825 - 830
  • [35] EEG motor/imagery signal classification comparative using machine learning algorithms
    Guadalupe Lazcano-Herrera, Alicia
    Fuentes-Aguilar, Rita Q.
    Alfaro-Ponce, Mariel
    2021 18TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2021), 2021,
  • [36] Discrimination of Motor Imagery Task using Wavelet Based EEG Signal Features
    Maswanganyi, Clifford
    Tu, Chunling
    Owolawi, Pius
    Du, Shengzhi
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT AND INNOVATIVE COMPUTING APPLICATIONS (ICONIC), 2018, : 401 - 404
  • [37] Motor imagery analysis based on EEG signal processing
    Ungureanu, G. M.
    Taralunga, D. D.
    Strungaru, R.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 1178 - 1181
  • [38] A motor imagery EEG signal optimized processing algorithm
    Geng, Xiaozhong
    Zhang, Xi
    Yue, Mengzhe
    Hu, Weixin
    Wang, Linen
    Zhang, Xintong
    Yu, Ping
    Long, Duo
    Yan, Hui
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 101 : 38 - 51
  • [39] Recent Trends in EEG-Based Motor Imagery Signal Analysis and Recognition: A Comprehensive Review
    Sharma, Neha
    Sharma, Manoj
    Singhal, Amit
    Vyas, Ritesh
    Malik, Hasmat
    Afthanorhan, Asyraf
    Hossaini, Mohammad Asef
    IEEE ACCESS, 2023, 11 : 80518 - 80542
  • [40] A brief survey on human activity recognition using motor imagery of EEG signals
    Mahalungkar, Seema Pankaj
    Shrivastava, Rahul
    Angadi, Sanjeevkumar
    ELECTROMAGNETIC BIOLOGY AND MEDICINE, 2024, 43 (04) : 312 - 327