Methane steam reforming using a membrane reactor equipped with a Pd-based composite membrane for effective hydrogen production

被引:59
|
作者
Kim, Chang-Hyun [1 ,3 ]
Han, Jae-Yun [1 ,3 ]
Lim, Hankwon [2 ]
Lee, Kwan-Young [3 ]
Ryi, Shin-Kun [1 ]
机构
[1] KIER, Adv Mat & Devices Lab, 152 Gajeong Ro, Daejeon 305343, South Korea
[2] Catholic Univ Daegu, Dept Adv Mat & Chem Engn, 13-13 Hayang Yep, Gyongsan 38430, Gyeongbuk, South Korea
[3] Korea Univ, Dept Chem & Biol Engn, 5-1 Anam Dong, Seoul 136701, South Korea
关键词
Methane steam reforming; Membrane reactor; Pre-combustion; Pd-based membrane; Hydrogen; Long-term stability; POROUS STAINLESS-STEEL; WATER-GAS SHIFT; CO2; CAPTURE; PERFORMANCE EVALUATION; SEPARATION PROCESSES; TEMPERATURE; MODULE; TECHNOLOGY; PLANTS;
D O I
10.1016/j.ijhydene.2017.10.054
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, a methane steam reforming (MSR) reaction was carried out using a Pd composite membrane reactor packed with a commercial Ru/Al2O3 catalyst under mild operating conditions, to produce hydrogen with CO2 capture. The Pd composite membrane was fabricated on a tubular stainless steel support by the electroless plating (ELP) method. The membrane exhibited a hydrogen permeance of 2.26 x 10(-3) mol m(2) s(-1) Pa (-0.5), H-2/N-2 selectivity of 145 at 773 K, and pressure difference of 20.3 kPa. The MSR reaction, which was carried out at steam to carbon ratio (S/C) = 3.0, gas hourly space velocity (GHSV) = 1700 h(-1), and 773 K, showed that methane conversion increased with the pressure difference and reached 79.5% at Delta P = 506 kPa. This value was similar to 1.9 time higher than the equilibrium value at 773 K and 101 kPa. Comparing with the previous studies which introduced sweeping gas for low hydrogen partial pressure in the permeate stream, very high pressure difference (2500-2900 kPa) for increase of hydrogen recovery and very low GHSV (<150) for increase hydraulic retention time (HRT), our result was worthy of notice. The gas composition monitored during the long-term stability test showed that the permeate side was composed of 97.8 vol% H-2, and the retentate side contained 67.8 vol% CO2 with 22.2 vol% CH4. When energy was recovered by CH4 combustion in the retentate streams, pre-combustion carbon capture was accomplished using the Pd-based composite membrane reactor. (c) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5863 / 5872
页数:10
相关论文
共 50 条
  • [41] Modeling of methane steam reforming in a palladium membrane reactor
    Fernandes, F. A. N.
    Soares, A. B., Jr.
    LATIN AMERICAN APPLIED RESEARCH, 2006, 36 (03) : 155 - 161
  • [42] Hydrogen production via natural gas steam reforming in a Pd-Au membrane reactor. Comparison between methane and natural gas steam reforming reactions
    Anzelmo, Bryce
    Wilcox, Jennifer
    Liguori, Simona
    JOURNAL OF MEMBRANE SCIENCE, 2018, 568 : 113 - 120
  • [43] Hydrogen production from the steam reforming of liquid hydrocarbons in membrane reactor
    Chen, Yazhong
    Xu, Hengyong
    Wang, Yuzhong
    Xiong, Guoxing
    CATALYSIS TODAY, 2006, 118 (1-2) : 136 - 143
  • [44] Methane steam reforming modeling in a palladium membrane reactor
    Fernandes, FAN
    Soares, AB
    FUEL, 2006, 85 (04) : 569 - 573
  • [45] Fixed bed membrane reactor for hydrogen production from steam methane reforming: Experimental and modeling approach
    Di Marcoberardino, Gioele
    Sosio, Francesco
    Manzolini, Giampaolo
    Campanari, Stefano
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (24) : 7559 - 7567
  • [46] Dry reforming of methane using Pd-based membrane reactors fabricated from different substrates
    Garcia-Garcia, F. R.
    Soria, M. A.
    Mateos-Pedrero, C.
    Guerrero-Ruiz, A.
    Rodriguez-Ramos, I.
    Li, K.
    JOURNAL OF MEMBRANE SCIENCE, 2013, 435 : 218 - 225
  • [47] Modeling of dry reforming of methane for hydrogen production at low temperatures using membrane reactor
    Lu, Cheng-Yang
    Chein, Rei-Yu
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2021, 19 (03) : 221 - 237
  • [48] Hydrogen production from bio-ethanol steam reforming reaction in a Pd/PSS membrane reactor
    Seelam, Prem K.
    Liguori, Simona
    Iulianelli, Adolfo
    Pinacci, Pietro
    Calabro, Vincenza
    Huuhtanen, Mika
    Keiski, Riitta
    Piemonte, Vincenzo
    Tosti, Silvano
    De Falco, Marcello
    Basile, Angelo
    CATALYSIS TODAY, 2012, 193 (01) : 42 - 48
  • [49] Experimental study of the methane steam reforming reaction in a dense Pd/Ag membrane reactor
    Gallucci, F
    Paturzo, L
    Famà, A
    Basile, A
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (04) : 928 - 933
  • [50] CO-free hydrogen production by ethanol steam reforming in a Pd-Ag membrane reactor
    Basile, A.
    Gallucci, F.
    Iulianelli, A.
    Tosti, S.
    FUEL CELLS, 2008, 8 (01) : 62 - 68