Structural and Biochemical Analysis of DNA Helix Invasion by the Bacterial 8-Oxoguanine DNA Glycosylase MutM

被引:22
|
作者
Sung, Rou-Jia [1 ,3 ]
Zhang, Michael [2 ]
Qi, Yan [6 ]
Verdine, Gregory L. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[3] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[4] Dana Farber Canc Inst, Chem Biol Initiat, Boston, MA 02115 USA
[5] Dana Farber Canc Inst, Program Canc Chem Biol, Boston, MA 02115 USA
[6] Harvard Univ, Sch Med, Grad Program Biophys, Boston, MA 02115 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
ESCHERICHIA-COLI; PROTEIN-STRUCTURE; FPG PROTEIN; REPAIR; LESION; SYSTEM; RECOGNITION; VALIDATION; CLONING; ACID;
D O I
10.1074/jbc.M112.415612
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MutM is a bacterial DNA glycosylase that serves as the first line of defense against the highly mutagenic 8-oxoguanine (oxoG) lesion, catalyzing glycosidic bond cleavage of oxoG to initiate base excision DNA repair. Previous work has shown that MutM actively interrogates DNA for the presence of an intrahelical oxoG lesion. This interrogation process involves significant buckling and bending of the DNA to promote extrusion of oxoG from the duplex. Structural snapshots have revealed several different highly conserved residues that are prominently inserted into the duplex in the vicinity of the target oxoG before and after base extrusion has occurred. However, the roles of these helix-invading residues during the lesion recognition and base extrusion process remain unclear. In this study, we set out to probe the function of residues Phe(114) and Met(77) in oxoG recognition and repair. Here we report a detailed biochemical and structural characterization of MutM variants containing either a F114A or M77A mutation, both of which showed significant decreases in the efficiency of oxoG repair. These data reveal that Met77 plays an important role in stabilizing the lesion-extruded conformation of the DNA. Phe(114), on the other hand, appears to destabilize the intrahelical state of the oxoG lesion, primarily by buckling the target base pair. We report the observation of a completely unexpected interaction state, in which the target base pair is ruptured but remains fully intrahelical; this structure vividly illustrates the disruptive influence of MutM on the target base pair.
引用
收藏
页码:10012 / 10023
页数:12
相关论文
共 50 条
  • [31] Structural basis for the lack of opposite base specificity of Clostridium acetobutylicum 8-oxoguanine DNA glycosylase
    Faucher, Frederick
    Wallace, Susan S.
    Doublie, Sylvie
    DNA REPAIR, 2009, 8 (11) : 1283 - 1289
  • [32] Augmented expression of a human gene for 8-oxoguanine DNA glycosylase (MutM) in B lymphocytes of the dark zone in lymph node germinal centers
    Kuo, FC
    Sklar, J
    JOURNAL OF EXPERIMENTAL MEDICINE, 1997, 186 (09): : 1547 - 1556
  • [33] Step-by-step mechanism of DNA damage recognition by human 8-oxoguanine DNA glycosylase
    Kuznetsova, Alexandra A.
    Kuznetsov, Nikita A.
    Ishchenko, Alexander A.
    Saparbaev, Murat K.
    Fedorova, Olga S.
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2014, 1840 (01): : 387 - 395
  • [34] 8-oxoguanine DNA glycosylase (OGG-1) regulates systemic inflammation induced by bacterial lipopolysacch
    Mabley, JG
    Wallace, R
    Deb, A
    Pacher, P
    Elder, R
    Szabo, C
    FASEB JOURNAL, 2004, 18 (04): : A552 - A553
  • [35] IMPAIRMENT OF MITOCHONDRIAL 8-OXOGUANINE DNA GLYCOSYLASE (OGG1) AGAINST ACCUMULATION OF 8-OXOGUANINE IN OSTEOARTIRITIC CHONDROCYTES.
    Yudoh, K.
    Karasawa, R.
    OSTEOARTHRITIS AND CARTILAGE, 2012, 20 : S146 - S147
  • [36] Structural Insight into the Discrimination between 8-Oxoguanine Glycosidic Conformers by DNA Repair Enzymes: A Molecular Dynamics Study of Human Oxoguanine Glycosylase 1 and Formamidopyrimidine-DNA Glycosylase
    Sowlati-Hashjin, Shahin
    Wetmore, Stacey D.
    BIOCHEMISTRY, 2018, 57 (07) : 1144 - 1154
  • [37] Essential role of ß-human 8-oxoguanine DNA glycosylase 1 in mitochondrial oxidative DNA repair
    Su, Yu-Hung
    Lee, Yen-Ling
    Chen, Sung-Fang
    Lee, Yun-Ping
    Hsieh, Yi-Hsuan
    Tsai, Jui-He
    Hsu, Jye-Lin
    Tian, Wei-Ting
    Huang, Wenya
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2013, 54 (01) : 54 - 64
  • [38] 8-OXOGUANINE (8-HYDROXYGUANINE) DNA GLYCOSYLASE AND ITS SUBSTRATE-SPECIFICITY
    TCHOU, J
    KASAI, H
    SHIBUTANI, S
    CHUNG, MH
    LAVAL, J
    GROLLMAN, AP
    NISHIMURA, S
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (11) : 4690 - 4694
  • [39] Linkage mapping of the rat 8-oxoguanine DNA glycosylase gene to chromosome 4
    Masuda, K
    Miyamoto, T
    Jung, CG
    Ding, M
    Cheng, JM
    Tsumagari, T
    Manabe, T
    Agui, T
    EXPERIMENTAL ANIMALS, 2001, 50 (04) : 353 - 354
  • [40] Expression of 8-oxoguanine DNA glycosylase (Ogg1) in mouse retina
    Bigot, Karine
    Leemput, Julia
    Vacher, Monique
    Campalans, Anna
    Radicella, J. Pablo
    Lacassagne, Emmanuelle
    Provost, Alexandra
    Masson, Christel
    Menasche, Maurice
    Abitbol, Marc
    MOLECULAR VISION, 2009, 15 (121): : 1139 - 1152