GPU Framework for Change Detection in Multitemporal Hyperspectral Images

被引:39
|
作者
Lopez-Fandino, Javier [1 ]
Heras, Dora B. [1 ]
Argueello, Francisco [1 ]
Dalla Mura, Mauro [2 ]
机构
[1] Univ Santiago de Compostela, Ctr Singular Invest Tecnoloxias Informac CiTIUS, Santiago De Compostela, Spain
[2] Univ Grenoble Alpes, Grenoble INP, CNRS, GIPSA Lab,Inst Engn, F-38000 Grenoble, France
关键词
Hyperspectral change detection; Segmentation; Spectral Angle Mapper; Change Vector Analysis; GPU; CUDA; SPECTRAL-SPATIAL CLASSIFICATION; SELECTION; METRICS;
D O I
10.1007/s10766-017-0547-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Nowadays, it is increasingly common to detect land cover changes using remote sensing multispectral images captured at different time-frames over the same area. A large part of the available change detection (CD) methods focus on pixel-based operations. The use of spectral-spatial techniques helps to improve the accuracy results but also implies a significant increase in processing time. In this paper, a Graphic Processor Unit (GPU) framework to perform object-based CD in multitemporal remote sensing hyperspectral data is presented. It is based on Change Vector Analysis with the Spectral Angle Mapper distance and Otsu's thresholding. Spatial information is taken into account by considering watershed segmentation. The GPU implementation achieves real-time execution and speedups of up to 46.5x with respect to an OpenMP implementation.
引用
收藏
页码:272 / 292
页数:21
相关论文
共 50 条
  • [11] Unsupervised and Self-Supervised Tensor Train for Change Detection in Multitemporal Hyperspectral Images
    Sohail, Muhammad
    Wu, Haonan
    Chen, Zhao
    Liu, Guohua
    ELECTRONICS, 2022, 11 (09)
  • [12] Fraction images in multitemporal change detection
    Haertel, V
    Shimabukuro, YE
    Almeida, R
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (23) : 5473 - 5489
  • [13] A theoretical Gaussian framework for anomalous change detection in hyperspectral images
    Acito, Nicola
    Diani, Marco
    Corsini, Giovanni
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXIII, 2017, 10427
  • [14] A NOVEL SEMISUPERVISED FRAMEWORK FOR MULTIPLE CHANGE DETECTION IN HYPERSPECTRAL IMAGES
    Liu, Sicong
    Tong, Xiaohua
    Bruzzone, Lorenzo
    Du, Peijun
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 173 - 176
  • [15] A Multisquint Framework for Change Detection in High-Resolution Multitemporal SAR Images
    Dominguez, Elias Mendez
    Meier, Erich
    Small, David
    Schaepman, Michael E.
    Bruzzone, Lorenzo
    Henke, Daniel
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06): : 3611 - 3623
  • [16] Fast Unmixing and Change Detection in Multitemporal Hyperspectral Data
    Borsoi, Ricardo Augusto
    Imbiriba, Tales
    Bermudez, Jose Carlos Moreira
    Richard, Cedric
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2021, 7 : 975 - 988
  • [17] Multitemporal Symmetric Fusion Network for Hyperspectral Change Detection
    Lu, Xukun
    Duan, Puhong
    Deng, Bin
    Kang, Xudong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [18] A SELF-SUPERVISED HIERARCHICAL CLUSTERING NETWORK FOR MULTIPLE CHANGE DETECTION IN MULTITEMPORAL HYPERSPECTRAL IMAGES
    Liang, Chengfang
    Chen, Zhao
    2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2022,
  • [19] Multiscale Change Detection in Multitemporal Satellite Images
    Celik, Turgay
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (04) : 820 - 824
  • [20] CHANGE DETECTION IN A MULTITEMPORAL SERIES OF RADAR IMAGES
    Benzid, Sami
    Deledalles, Charles
    Abdelfattah, Riadh
    Chaabane, Ferdaous
    Tupin, Florence
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 1473 - 1476