Poincare Symmetry from Heisenberg's Uncertainty Relations

被引:2
|
作者
Baskal, Sibel [1 ]
Kim, Young S. [2 ]
Noz, Marilyn E. [3 ]
机构
[1] Middle East Tech Univ, Dept Phys, TR-06800 Ankara, Turkey
[2] Univ Maryland, Ctr Fundamental Phys, College Pk, MD 20742 USA
[3] NYU, Dept Radiol, 560 1St Ave, New York, NY 10016 USA
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 03期
关键词
Poincare symmetry from uncertainty relations; one symmetry for quantum mechanics; special relativity; UNITARY REPRESENTATIONS; COHERENT; STATES;
D O I
10.3390/sym11030409
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is noted that the single-variable Heisenberg commutation relation contains the symmetry of the Sp(2) group which is isomorphic to the Lorentz group applicable to one time-like dimension and two space-like dimensions, known as the SO(2,1) group. According to Paul A. M. Dirac, from the uncertainty commutation relations for two variables, it possible to construct the de Sitter group SO(3,2), namely the Lorentz group applicable to three space-like variables and two time-like variables. By contracting one of the time-like variables in SO(3,2), it is possible to construct the inhomogeneous Lorentz group ISO(3,1) which serves as the fundamental symmetry group for quantum mechanics and quantum field theory in the Lorentz-covariant world. This ISO(3,1) group is commonly known as the Poincare group.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Uncertainty in Bohr's response to the Heisenberg microscope
    Tanona, Scott
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2004, 35B (03): : 483 - 507
  • [42] Heisenberg's Uncertainty Principle and Particle Trajectories
    Aristarkhov, S.
    PHYSICS OF PARTICLES AND NUCLEI, 2023, 54 (05) : 984 - 990
  • [43] How Certain is Heisenberg's Uncertainty Principle?
    Atkinson, David
    Peijnenburg, Jeanne
    HOPOS-THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR THE HISTORY OF PHILOSOPHY OF SCIENCE, 2022, 12 (01) : 1 - 21
  • [44] Testing Heisenberg-Type Measurement Uncertainty Relations of Three Observables
    Mao, Ya-Li
    Chen, Hu
    Niu, Chang
    Li, Zheng-Da
    Yu, Sixia
    Fan, Jingyun
    PHYSICAL REVIEW LETTERS, 2023, 131 (15) : 150203
  • [45] Heisenberg’s Uncertainty Principle and Particle Trajectories
    Serj Aristarhov
    Foundations of Physics, 2023, 53
  • [46] Internal Structure of the Heisenberg and Robertson-Schrödinger Uncertainty Relations
    L. Skála
    International Journal of Theoretical Physics, 2013, 52 : 3393 - 3404
  • [47] HEISENBERG UNCERTAINTY RELATIONS IN NON-HAMILTONIAN QUANTUM STATISTICAL MECHANICS
    INGARDEN, RS
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1973, 21 (06): : 579 - 580
  • [48] Generalized Heisenberg commutation relations and uncertainty inequality for relativistic harmonic oscillators
    Tang, J
    PHYSICS LETTERS A, 1996, 210 (1-2) : 33 - 39
  • [49] HEISENBERG'S UNCERTAINTY PRINCIPLE IN THE SENSE OF BEURLING
    Hedenmalm, Haakan
    JOURNAL D ANALYSE MATHEMATIQUE, 2012, 118 : 691 - 702
  • [50] Heisenberg's Uncertainty Principle and Particle Trajectories
    Aristarhov, Serj
    FOUNDATIONS OF PHYSICS, 2023, 53 (01)