Structure Connectivity and Substructure Connectivity of <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Ary <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-Cube Networks

被引:0
|
作者
Zhang, Guozhen [1 ]
Wang, Dajin [2 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
[2] Montclair State Univ, Dept Comp Sci, Montclair, NJ 07043 USA
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Artificial neural networks; Fault tolerance; Fault tolerant systems; Hypercubes; Licenses; Computer science; Interconnection networks; structure connectivity; substructure connectivity; < italic xmlns:ali="http:; www; niso; org; schemas; ali; 1; 0; xmlns:mml="http:; w3; 1998; Math; MathML" xmlns:xlink="http:; 1999; xlink" xmlns:xsi="http:; 2001; XMLSchema-instance"> k <; italic >-ary < italic xmlns:ali="http:; XMLSchema-instance"> n <; italic >-cubes; paths; cycles; FAULT-TOLERANCE; CONDITIONAL CONNECTIVITY; EXTRA CONNECTIVITY; DIAGNOSABILITY; EXTRACONNECTIVITY;
D O I
10.1109/ACCESS.2019.2941711
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present new results on the fault tolerability of $k$ -ary $n$ -cube (denoted $Q_{n}<^>{k}$ ) networks. $Q_{n}<^>{k}$ is a topological model for interconnection networks that has been extensively studied since proposed, and this paper is concerned with the <italic>structure/substructure connectivity</italic> of $Q_{n}<^>{k}$ networks, for <italic>paths</italic> and <italic>cycles</italic>, two basic yet important network structures. Let $G$ be a connected graph and $T$ a connected subgraph of $G$ . The $T$ -<italic>structure connectivity</italic> $\kappa (G; T)$ of $G$ is the cardinality of a minimum set of subgraphs in $G$ , such that each subgraph is isomorphic to $T$ , and the sets removal disconnects $G$ . The $T$ -<italic>substructure connectivity</italic> $\kappa <^>{s}(G; T)$ of $G$ is the cardinality of a minimum set of subgraphs in $G$ , such that each subgraph is isomorphic to a connected subgraph of $T$ , and the sets removal disconnects $G$ . In this paper, we study $\kappa (Q_{n}<^>{k}; T)$ and $\kappa <^>{s}(Q_{n}<^>{k}; T)$ for $T=P_{i}$ , a path on $i$ nodes (resp. $T=C_{i}$ , a cycle on $i$ nodes). Lv <italic>et al.</italic> determined $\kappa (Q_{n}<^>{k}; T)$ and $\kappa <^>{s}(Q_{n}<^>{k}; T)$ for $T\in \{P_{1},P_{2},P_{3}\}$ . Our results generalize the preceding results by determining $\kappa (Q_{n}<^>{k}; P_{i})$ and $\kappa <^>{s}(Q_{n}<^>{k}; P_{i})$ . In addition, we have also established $\kappa (Q_{n}<^>{k}; C_{i})$ and $\kappa <^>{s}(Q_{n}<^>{k}; C_{i})$ .
引用
收藏
页码:134496 / 134504
页数:9
相关论文
共 50 条