Maximum likelihood estimation of stock volatility using jump-diffusion models

被引:0
|
作者
Chekenya, Nixon S. [1 ]
机构
[1] Midland State Univ, Gweru, Zimbabwe
来源
COGENT ECONOMICS & FINANCE | 2019年 / 7卷 / 01期
关键词
Merton jump diffusion model; Black scholes volatility (IV) curves; Weiner process; maximum likelihood estimation; RETURNS;
D O I
10.1080/23322039.2019.1582318
中图分类号
F [经济];
学科分类号
02 ;
摘要
We investigate whether there are systematic jumps in stock prices using the Brownian motion approach and Poisson processes to test diffusion and jump risk, respectively, on Johannesburg Stock Exchange and whether these jumps cause asset return volatility. Using stock market data from June 2002 to September 2016, we hypothesize that stocks with high positive (negative) slopes are more likely to have large positive (negative) jumps in the future. As such, we expect to observe salient properties of volatility on listed stocks. We also conjecture that it is valid to use maximum likelihood procedures in estimating jumps in stocks.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] QUASI-MAXIMUM LIKELIHOOD ESTIMATION OF STOCHASTIC VOLATILITY MODELS
    RUIZ, E
    JOURNAL OF ECONOMETRICS, 1994, 63 (01) : 289 - 306
  • [32] Unrestricted maximum likelihood estimation of multivariate realized volatility models
    Vogler, Jan
    Golosnoy, Vasyl
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 304 (03) : 1063 - 1074
  • [33] On the Estimation of Jump-Diffusion Models Using Intraday Data: A Filtering-Based Approach
    Begin, Jean-Francois
    Amaya, Diego
    Gauthier, Genevieve
    Malette, Marie-Eve
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2020, 11 (04): : 1168 - 1208
  • [34] Reduced Order Models for Pricing American Options under Stochastic Volatility and Jump-Diffusion Models
    Balajewicz, Maciej
    Toivanen, Jari
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 734 - 743
  • [35] A general jump-diffusion process to price volatility derivatives
    Yan, Cheng
    Zhao, Bo
    JOURNAL OF FUTURES MARKETS, 2019, 39 (01) : 15 - 37
  • [36] The risk-neutral stochastic volatility in interest rate models with jump-diffusion processes
    Gomez-Valle, L.
    Martinez-Rodriguez, J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 347 : 49 - 61
  • [37] Computation of the unknown volatility from integral option price observations in jump-diffusion models
    Georgiev, Slavi G.
    Vulkov, Lubin G.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 188 : 591 - 608
  • [38] AN INVERSE PROBLEM OF CALIBRATING VOLATILITY IN JUMP-DIFFUSION OPTION PRICING MODELS1
    Jin, Chang
    Ma, Qing-Hua
    Xu, Zuo-Liang
    BOUNDARY VALUE PROBLEMS, INTEGRAL EQUATIONS AND RELATED PROBLEMS, 2011, : 102 - 112
  • [39] Decomposition of the option pricing formula for infinite activity jump-diffusion stochastic volatility models
    El-Khatib, Youssef
    Makumbe, Zororo S.
    Vives, Josep
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 231 : 276 - 293
  • [40] Convoluted smoothed kernel estimation for drift coefficients in jump-diffusion models
    Liu, Naiqi
    Song, Kunyang
    Song, Yuping
    Wang, Xiaochen
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (21) : 7354 - 7389