Semi-supervised structure attentive temporal mixup coherence for medical image segmentation

被引:3
|
作者
Pawan, S. J. [1 ]
Jeevan, Govind [1 ]
Rajan, Jeny [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Comp Sci & Engn, Mangalore 575025, Karnataka, India
关键词
Convolutional neural networks; Semi supervised learning; Consistency regularization;
D O I
10.1016/j.bbe.2022.09.005
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep convolutional neural networks have shown eminent performance in medical image segmentation in supervised learning. However, this success is predicated on the availability of large volumes of pixel-level labeled data, making these approaches impractical when labeled data is scarce. On the other hand, semi-supervised learning utilizes pertinent infor-mation from unlabeled data along with minimal labeled data, alleviating the demand for labeled data. In this paper, we leverage the mixup-based risk minimization operator in a student-teacher-based semi-supervised paradigm along with structure-aware constraints to enforce consistency coherence among the student predictions for unlabeled samples and the teacher predictions for the corresponding mixup sample by significantly diminish-ing the need for labeled data. Besides, due to the intrinsic simplicity of the linear combina-tion operation used for generating mixup samples, the proposed method stands at a computational advantage over existing consistency regularization-based SSL methods. We experimentally validate the performance of the proposed model on two public bench-mark datasets, namely the Left Atrial (LA) and Automatic Cardiac Diagnosis Challenge (ACDC) datasets. Notably, on the LA dataset's lowest labeled data set-up (5%), the proposed method significantly improved the Dice Similarity Coefficient and the Jaccard Similarity Coefficient by 1.08% and 1.46%, respectively. Furthermore, we demonstrate the efficacy of the proposed method with a consistent improvement across various labeled data propor-tions on the aforementioned datasets.(c) 2022 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1149 / 1161
页数:13
相关论文
共 50 条
  • [41] Semi-Supervised Learning With Fact-Forcing for Medical Image Segmentation
    Bui, Phuoc-Nguyen
    Le, Duc-Tai
    Bum, Junghyun
    Kim, Seongho
    Song, Su Jeong
    Choo, Hyunseung
    IEEE ACCESS, 2023, 11 : 99413 - 99425
  • [42] Boundary-Aware Prototype in Semi-Supervised Medical Image Segmentation
    Wang, Yongchao
    Xiao, Bin
    Bi, Xiuli
    Li, Weisheng
    Gao, Xinbo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 5456 - 5467
  • [43] Exploring Feature Representation Learning for Semi-Supervised Medical Image Segmentation
    Wu, Huimin
    Li, Xiaomeng
    Cheng, Kwang-Ting
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16589 - 16601
  • [44] Semi-supervised medical image segmentation network based on mutual learning
    Sun, Junmei
    Wang, Tianyang
    Wang, Meixi
    Li, Xiumei
    Xu, Yingying
    MEDICAL PHYSICS, 2025, 52 (03) : 1589 - 1600
  • [45] Boundary-Aware Prototype in Semi-Supervised Medical Image Segmentation
    Wang, Yongchao
    Xiao, Bin
    Bi, Xiuli
    Li, Weisheng
    Gao, Xinbo
    IEEE Transactions on Image Processing, 2024, 33 : 5456 - 5467
  • [46] Multidimensional perturbed consistency learning for semi-supervised medical image segmentation
    Yuan, Enze
    Zhao, Bin
    Qin, Xiao
    Ding, Shuxue
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (03)
  • [47] Teacher-Student Semi-supervised Approach for Medical Image Segmentation
    Calisto, Maria Baldeon
    FAST AND LOW-RESOURCE SEMI-SUPERVISED ABDOMINAL ORGAN SEGMENTATION, FLARE 2022, 2022, 13816 : 152 - 162
  • [48] Exploring Feature Representation Learning for Semi-Supervised Medical Image Segmentation
    Wu, Huimin
    Li, Xiaomeng
    Cheng, Kwang-Ting
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16589 - 16601
  • [49] A Lightweight Deep Semi-supervised Student Model for Medical Image Segmentation
    Le Dinh Huynh
    Truong Cong Doan
    Phan Duy Hung
    COOPERATIVE DESIGN, VISUALIZATION, AND ENGINEERING, CDVE 2024, 2024, 15158 : 233 - 242
  • [50] Cross co-teaching for semi-supervised medical image segmentation
    Zhang, Fan
    Liu, Huiying
    Wang, Jinjiang
    Lyu, Jun
    Cai, Qing
    Li, Huafeng
    Dong, Junyu
    Zhang, David
    Pattern Recognition, 2024, 152