Mixture models for clustering multilevel growth trajectories

被引:27
|
作者
Ng, S. K. [1 ]
McLachlan, G. J. [2 ]
机构
[1] Griffith Univ, Sch Med, Griffith Hlth Inst, Meadowbrook, Qld 4131, Australia
[2] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
Mixture models; Random effects; Multilevel growth trajectories; EM algorithm; GENE-EXPRESSION DATA; FINITE MIXTURES; HEALTH; AXIS;
D O I
10.1016/j.csda.2012.12.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Mixture model-based methods assuming independence may not be valid for clustering growth trajectories arising from multilevel studies because longitudinal data collected from the same unit are often correlated. A mixture of mixed effects models is considered to capture the correlation using multilevel and multivariate random effects. Furthermore, the mixing proportions are allowed to depend on covariates. The additional information is thus incorporated into the mixture model to adjust for individual probabilities of membership of the components. The proposed method is illustrated using simulated and real multilevel growth trajectory data sets from various scientific fields. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 50 条
  • [41] Functional clustering of neuronal signals with FMM mixture models
    Rueda, Cristina
    Rodriguez-Collado, Alejandro
    HELIYON, 2023, 9 (10)
  • [42] Clustering spatial networks through latent mixture models
    Egidi, Leonardo
    Pauli, Francesco
    Torelli, Nicola
    Zaccarin, Susanna
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2023, 186 (01) : 137 - 156
  • [43] A robust EM clustering algorithm for Gaussian mixture models
    Yang, Miin-Shen
    Lai, Chien-Yo
    Lin, Chih-Ying
    PATTERN RECOGNITION, 2012, 45 (11) : 3950 - 3961
  • [44] An Analysis of WellBeing in Secondary School with Multilevel Growth Curve models and Multilevel Multivariate Models
    Bieke De Fraine
    Georges Van Landeghem
    Jan Van Damme
    Patrick Onghena
    Quality and Quantity, 2005, 39 : 297 - 316
  • [45] Clustering and unconstrained ordination with Dirichlet process mixture models
    Stratton, Christian
    Hoegh, Andrew
    Rodhouse, Thomas J.
    Green, Jennifer L.
    Banner, Katharine M.
    Irvine, Kathryn M.
    METHODS IN ECOLOGY AND EVOLUTION, 2024, 15 (09): : 1720 - 1732
  • [46] Fuzzy clustering to estimate the parameters of block mixture models
    G. Govaert
    M. Nadif
    Soft Computing, 2006, 10 : 415 - 422
  • [47] IDENTIFIABILITY OF NONPARAMETRIC MIXTURE MODELS AND BAYES OPTIMAL CLUSTERING
    Aragam, Bryon
    Dan, Chen
    Xing, Eric P.
    Ravikumar, Pradeep
    ANNALS OF STATISTICS, 2020, 48 (04): : 2277 - 2302
  • [48] On Clustering fMRI Using Potts and Mixture Regression Models
    Xia, Jing
    Liang, Feng
    Wang, Yongmei Michelle
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 4795 - +
  • [49] Clustering for binary data and mixture models - Choice of the model
    Nadif, M
    Govaert, G
    APPLIED STOCHASTIC MODELS AND DATA ANALYSIS, 1997, 13 (3-4): : 269 - 278
  • [50] Maximum likelihood clustering via normal mixture models
    McLachlan, GJ
    Peel, D
    Whiten, WJ
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 1996, 8 (02) : 105 - 111