An approximation for discrete B-splines in time domain

被引:16
|
作者
Ichige, K [1 ]
Kamada, M [1 ]
机构
[1] IBARAKI UNIV,DEPT COMP & INFORMAT SCI,HITACHI,IBARAKI 316,JAPAN
关键词
D O I
10.1109/97.558645
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A simple discrete version of B-splines defined as a multifold discrete convolution of sampled rectangles Is proposed in the analogy of B-splines being multifold convolution integrals of rectangular functions. Then it is proven that its staircase interpolation tends to the B-spline when the sampling interval goes to zero, This version can be regarded as an approximation for the discrete B-splines established in the literature, and it is faster in numerical evaluation.
引用
收藏
页码:82 / 84
页数:3
相关论文
共 50 条
  • [31] ON CONVOLUTIONS OF B-SPLINES
    STROM, K
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 55 (01) : 1 - 29
  • [32] Quaternionic B-splines
    Hogan, Jeffrey A.
    Massopust, Peter
    JOURNAL OF APPROXIMATION THEORY, 2017, 224 : 43 - 65
  • [33] Multiquadric B-splines
    Beatson, RK
    Dyn, N
    JOURNAL OF APPROXIMATION THEORY, 1996, 87 (01) : 1 - 24
  • [34] Extending fundamental formulas from classical B-splines to quantum B-splines
    Budakci, Gulter
    Disibuyuk, Cetin
    Goldman, Ron
    Oruc, Halil
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 282 : 17 - 33
  • [35] Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement
    Lyche, Tom
    Manni, Carla
    Speleers, Hendrik
    SPLINES AND PDES: FROM APPROXIMATION THEORY TO NUMERICAL LINEAR ALGEBRA, 2018, 2219 : 1 - 76
  • [36] Approximation error estimates and inverse inequalities for B-splines of maximum smoothness
    Takacs, Stefan
    Takacs, Thomas
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (07): : 1411 - 1445
  • [37] Approximation using cubic B-splines with improved training speed and accuracy
    Mason, JD
    Hlavackova, K
    Warwick, K
    COMPUTER-INTENSIVE METHODS IN CONTROL AND SIGNAL PROCESSING: THE CURSE OF DIMENSIONALITY, 1997, : 295 - 303
  • [38] Approximation and geometric modeling with simplex B-splines associated with irregular triangles
    Auerbach, S.
    Gmelig Meyling, R.H.J.
    Neamtu, M.
    Schaeben, H.
    Computer Aided Geometric Design, 1991, 8 (01) : 67 - 87
  • [39] Dirichlet splines as fractional integrals of B-splines
    Castell, WZ
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2002, 32 (02) : 545 - 559
  • [40] Nonparametric Time-Domain Identification of Linear Slowly Time-Variant Systems Using B-Splines
    Csurcsia, Peter Zoltan
    Schoukens, Johan
    Kollar, Istvan
    Lataire, John
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2015, 64 (01) : 252 - 262