Precise intermittency for the parabolic Anderson equation with an (1+1)-dimensional time-space white noise

被引:32
|
作者
Chen, Xia [1 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
关键词
Intermittency; White noise; Brownian motion; Parabolic Anderson model; Feynman-Kac's representation; Ground state energy; STOCHASTIC HEAT-EQUATION;
D O I
10.1214/15-AIHP673
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The moment Lyapunov exponent is computed for the solution of the parabolic Anderson equation with an (1 + 1)-dimensional time-space white noise. Our main result positively confirms an open problem posted in (Ann. Probab. (2015) to appear) and originated from the observations made in the physical literature (J. Statist. Phys. 78 (1995) 1377-1401) and (Nuclear Physics B 290 (1987) 582-602). By a link through the Feynman-Kac's formula, our theorem leads to the evaluation of the ground state energy for the n-body problem with Dirac pair interaction.
引用
收藏
页码:1486 / 1499
页数:14
相关论文
共 50 条
  • [21] Dirac equation in (1+1) dimensional curved space-time: Bound states and bound states in continuum
    Ghosh, P.
    Roy, P.
    PHYSICA SCRIPTA, 2021, 96 (02)
  • [22] New exact traveling wave solutions for space-time fractional (1+1)-dimensional SRLW equation
    Ahmadian, Sabah
    Darvishi, M. T.
    OPTIK, 2016, 127 (22): : 10697 - 10704
  • [23] NOISE AND NONLINEARITIES IN (1+1)-DIMENSIONAL SYSTEM
    LAWRENCE, AF
    LIAO, GG
    ABAWI, AT
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1991, 16 (02) : 195 - 200
  • [24] Analytical Solutions to the Dirac equation in 1+1 Space-Time Dimension
    Eleuch, H.
    Alhaidari, A. D.
    Bahlouli, H.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 (01): : 149 - 151
  • [25] High dimensional finite elements for time-space multiscale parabolic equations
    Wee Chin Tan
    Viet Ha Hoang
    Advances in Computational Mathematics, 2019, 45 : 1291 - 1327
  • [26] High dimensional finite elements for time-space multiscale parabolic equations
    Tan, Wee Chin
    Viet Ha Hoang
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (03) : 1291 - 1327
  • [27] Space-time-resolved quantum electrodynamics: A (1+1)-dimensional model
    Glasgow, Scott
    Smith, Dallas
    Pritchett, Luke
    Gardner, John
    Ware, Michael J.
    PHYSICAL REVIEW A, 2016, 93 (06)
  • [28] Holographic networks for (1+1)-dimensional de Sitter space-time
    Niermann, Laura
    Osborne, Tobias J.
    PHYSICAL REVIEW D, 2022, 105 (12)
  • [29] MASSIVE PARTICLE CREATION IN A STATIC (1+1)-DIMENSIONAL SPACE-TIME
    LAMB, DJ
    CAPRI, AZ
    MODERN PHYSICS LETTERS A, 1994, 9 (31) : 2857 - 2869
  • [30] Large time asymptotics for the parabolic Anderson model driven by space and time correlated noise
    Jingyu Huang
    Khoa Lê
    David Nualart
    Stochastics and Partial Differential Equations: Analysis and Computations, 2017, 5 : 614 - 651