Ricci-flat and charged wormholes in five dimensions

被引:13
|
作者
Lue, H. [1 ,2 ]
Mei, Jianwei [1 ]
机构
[1] Texas A&M Univ, George & Cynthia Woods Mitchell Inst Fundamental, College Stn, TX 77843 USA
[2] USTC, Interdisciplinary Ctr Theoret Studies, Hefei 230026, Anhui, Peoples R China
关键词
D O I
10.1016/j.physletb.2008.07.100
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct stationary Ricci-flat inter-universe Lorentzian wormhole solutions in all D >= 5 dimensions that connect two flat asymptotic spacetimes. Such a solution can be viewed as the gravity dual of a string tachyon state whose linear momentum is larger than its tension. We focus our analysis on the D = 5 wormholes which are not traversable for the timelike and null geodesics; however, we demonstrate that there exist accelerated timelike trajectories that traverse from one asymptotic region to the other. We further study the minimally-coupled scalar wave equation and demonstrate that the quantum tunnelling between two worlds must occur. We also obtain charged wormholes in five-dimensional supergravities. With appropriate choice of parameters, these wormholes connect AdS(3) x S-2 in one asymptotic region to flat Minkowskian spacetime in the other. (C) 2008 Published by Elsevier B.V.
引用
收藏
页码:511 / 516
页数:6
相关论文
共 50 条
  • [31] CONFORMALLY RICCI-FLAT PERFECT FLUIDS
    VANDENBERGH, N
    JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (04) : 1076 - 1081
  • [32] Ricci-flat Graphs with Girth Four
    Wei Hua He
    Jun Luo
    Chao Yang
    Wei Yuan
    Hui Chun Zhang
    Acta Mathematica Sinica, English Series, 2021, 37 : 1679 - 1691
  • [33] Holonomy rigidity for Ricci-flat metrics
    Bernd Ammann
    Klaus Kröncke
    Hartmut Weiss
    Frederik Witt
    Mathematische Zeitschrift, 2019, 291 : 303 - 311
  • [34] Ricci-flat Graphs with Girth Four
    Wei Hua HE
    Jun LUO
    Chao YANG
    Wei YUAN
    Hui Chun ZHANG
    ActaMathematicaSinica,EnglishSeries, 2021, (11) : 1679 - 1691
  • [35] Asymptotically cylindrical Ricci-flat manifolds
    Salur, Sema
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) : 3049 - 3056
  • [36] ON A CLASS OF RICCI-FLAT DOUGLAS METRICS
    Sevim, Esra Sengelen
    Shen, Zhongmin
    Zhao, Lili
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (06)
  • [37] A new incomplete Ricci-flat metric
    Malkovich, E. G.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (05)
  • [38] A class of Ricci-flat Finsler metrics
    Ulgen, Semail
    Sevim, Esra S.
    ANNALES POLONICI MATHEMATICI, 2018, 121 (01) : 73 - 83
  • [39] Optimal coordinates for Ricci-flat conifolds
    Kroncke, Klaus
    Szabo, Aron
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (07)
  • [40] Holonomy rigidity for Ricci-flat metrics
    Ammann, Bernd
    Kroencke, Klaus
    Weiss, Hartmut
    Witt, Frederik
    MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (1-2) : 303 - 311