Effects of Promethazine on Proliferation and Apoptosis of Myocardial Cells in Rats with Myocardial Ischemia-Reperfusion Injury Through PI3K/Akt Signaling Pathway

被引:0
|
作者
Xiao, Hong Bing [1 ]
Hu, Wei [1 ]
Gu, Jun [2 ]
Li, Dandan [1 ]
机构
[1] Fudan Univ, Minhang Hosp, Dept Cardiol, Shanghai 201199, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Dept Cardiol, Sch Med, Shanghai 200001, Peoples R China
关键词
Promethazine; PI3K/Akt Pathway; Myocardial Ischemia-Reperfusion Injury; ISCHEMIA/REPERFUSION INJURY;
D O I
10.1166/jbt.2020.2259
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Objective: To assess promethazine's effect on myocardial cells in rats with myocardial ischemiareperfusion injury (MIRI). Methods: The rat MIRI model was established and treated as the ischemia group. MIRI rats were treated with promethazine and included as the drug group. Rats only undergoing thoracotomy were enrolled as the control group. The physiological function of heart was assessed using the ultrasound cardiotachograph, and the apoptosis and proliferation of myocardial cells were detected using TUNEL assay and Ki67 staining, respectively. Moreover, the expressions of Caspase-3, Bcl-2, P13K, GSK-3, PDK-1 and PKB were determined via Western blotting and qPCR. Results: There were significant differences in cardiac function indexes [left ventricular enddiastolic diameter (LVEDd), left ventricular end systolic diameter (LVESd), ejection fraction (EF) and fractional shortening (FS)) among the three groups (p = 0.002, 0.004, 0.025 and 0.012), and ischemia group had the highest LVEDd [(8.73 +/- 0.31) mm] and LVESd [(7.98 +/- 0.37) mm] and lowest EF [(42 +/- 3.8)%] and FS [(40.3 +/- 2.8)%]. The number of apoptotic myocardial cells was significant higher in ischemia group than control (p < 0.05), while it was significantly declined after treatment with promethazine (p < 0.05). Caspase-3 was significantly upregulated and Bcl-2 was downregulated in ischemia group which were all significantly reversed in drug group. Besides, Ki67 level was significantly reduced in ischemia group compared to control and higher in drug group than ischemia group, indicating that drug treatment increased cell proliferation ability. The levels of P13K, GSK-3 and PKB in myocardial tissues were significantly declined in ischemia group and elevated after the treatment with promethazine without difference of PDK-1 level in myocardial tissues among the three groups. Conclusion: Promethazine inhibits apoptosis and promotes proliferation of myocardial cells in MIRI rats through PI3K/Akt signaling pathway.
引用
收藏
页码:477 / 481
页数:5
相关论文
共 50 条
  • [41] Tanshinone IIA protects against myocardial ischemia reperfusion injury by activating the PI3K/Akt/mTOR signaling pathway
    Li, Qiang
    Shen, Li
    Wang, Zhen
    Jiang, Hai-Peng
    Liu, Li-Xia
    BIOMEDICINE & PHARMACOTHERAPY, 2016, 84 : 106 - 114
  • [42] Protectin D1 Alleviates Myocardial Ischemia/Reperfusion Injury by Regulating PI3K/AKT Signaling Pathway
    Zhang, Peng
    Wang, Jin
    Wang, Xingsong
    Wang, Li
    Xu, Shihai
    Gong, Ping
    JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH, 2024, 17 (02) : 376 - 387
  • [43] Protectin D1 Alleviates Myocardial Ischemia/Reperfusion Injury by Regulating PI3K/AKT Signaling Pathway
    Peng Zhang
    Jin Wang
    Xingsong Wang
    Li Wang
    Shihai Xu
    Ping Gong
    Journal of Cardiovascular Translational Research, 2024, 17 : 376 - 387
  • [44] Bisoprolol, a β1 antagonist, protects myocardial cells from ischemia-reperfusion injury via PI3K/AKT/GSK3β pathway
    Wang, Jing
    Liu, Jing
    Xie, Liang
    Cai, Xiaomin
    Ma, Xiaohua
    Gong, Jianbin
    FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2020, 34 (06) : 708 - 720
  • [45] Preconditioning with acteoside ameliorates myocardial ischemia-reperfusion injury by targeting HSP90AA1 and the PI3K/Akt signaling pathway
    Li, Jing
    Guo, Yuxin
    Yang, Yang
    Xue, Qing
    Cao, Hong
    Yang, Guangyuan
    Jia, Linlin
    Yu, Haibo
    MOLECULAR MEDICINE REPORTS, 2025, 31 (03)
  • [46] Syringic acid mitigates myocardial ischemia reperfusion injury by activating the PI3K/Akt/GSK-3β signaling pathway
    Liu, Gen
    Zhang, Bo-fang
    Hu, Qi
    Liu, Xiao-pei
    Chen, Jing
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 531 (02) : 242 - 249
  • [47] STRAP reduces endoplasmic reticulum stress and apoptosis in cardiomyocytes and attenuates myocardial ischemia-reperfusion injury by activating PI3K/PDK1/Akt signaling pathway
    Huang, L.
    Kuang, F.
    Xie, Q. -Y.
    Jing, R.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2020, 24 (08) : 4430 - 4439
  • [48] Effects of sevoflurane postconditioning on the expression of AKT/mTOR and apoptosis of myocardial cells in myocardial ischemia-reperfusion rats
    Liu, F. Q.
    Liu, C. P.
    Xu, M. H.
    Zhu, J.
    Yu, W.
    Wang, L. L.
    JOURNAL OF BIOLOGICAL REGULATORS AND HOMEOSTATIC AGENTS, 2020, 34 (05): : 1909 - 1913
  • [49] Neuroprotective effects of metformin on cerebral ischemia-reperfusion injury by regulating PI3K/Akt pathway
    Ruan, Cailian
    Guo, Hongtao
    Gao, Jiaqi
    Wang, Yiwei
    Liu, Zhiyong
    Yan, Jinyi
    Li, Xiaoji
    Lv, Haixia
    BRAIN AND BEHAVIOR, 2021, 11 (10):
  • [50] MiR-506 alleviates myocardial ischemia-reperfusion injury via targeting PI3K/AKT
    Zhang, M.
    Wang, J-Y
    Li, L.
    Li, G-M
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2020, 24 (24) : 12896 - 12903