Experimental investigation and modelling the deformation properties of demolition wastes subjected to freeze-thaw cycles using ANN and SVR

被引:46
|
作者
Ghorbani, Behnam [1 ]
Arulrajah, Arul [1 ]
Narsilio, Guillermo [2 ]
Horpibulsuk, Suksun [3 ,4 ]
机构
[1] Swinburne Univ Technol, Dept Civil & Construct Engn, Melbourne, Vic, Australia
[2] Univ Melbourne, Dept Infrastruct Engn, Melbourne, Vic, Australia
[3] Suranaree Univ Technol, Sch Civil Engn, 111 Univ Ave, Nakhon Ratchasima 30000, Thailand
[4] Suranaree Univ Technol, Ctr Excellence Innovat Sustainable Infrastruct De, 111 Univ Ave, Nakhon Ratchasima 30000, Thailand
基金
澳大利亚研究理事会;
关键词
Demolition waste; Pavement base/subbase; Freeze-thaw cycle; Resilient modulus; Artificial neural network; Support vector regression; SELF-CEMENTING PROPERTIES; RESILIENT MODULUS; PERMANENT DEFORMATION; RECYCLED CONSTRUCTION; BEARING CAPACITY; CONCRETE; STABILIZATION; FORMULATION; COMPACTION; STRENGTH;
D O I
10.1016/j.conbuildmat.2020.119688
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Construction and demolition (C&D) waste materials are widely being used as a pavement construction material. The aim of this research is to investigate the effect of freeze-thaw (FT) cycles on the deformation properties of C&D materials. Two artificial intelligence (AI) techniques, namely artificial neural network (ANN) and support vector regression (SVR) were developed for prediction of resilient modulus (M-r), which have been rarely used for modelling the behaviour of C&D materials. Laboratory repeated load triaxial (RLT) tests were performed on two types of C&D materials including recycled concrete aggregate (RCA) and crushed brick (CB) to investigate the permanent deformation and M-r. The influence of up to 20 FT cycles on the behaviour of C&D materials, for freezing to -15 degrees C and thawing to 20 degrees C, was investigated. It was observed that deformation properties of RCA improved consistently as the number of FT cycles increased. Increasing the number of FT cycles reduced the permanent deformation and increased the M-r of RCA. For CB, application of up to 10 FT cycles resulted in an increase of resilient modulus (M-r) and a decrease of permanent deformation. However, application of more than 10 FT cycles, i.e., 15 and 20 FT cycles, had detrimental effects on the deformation characteristics of CB. An ANN model, as well as SVR models with different kernels, were developed for predicting the M-r of C&D materials exposed to FT cycles and investigating the effect of test variables. The developed models included number of FT cycles (N-FT) and stress states, i.e., confining pressure (sigma(3)), and deviator stress (sigma(d)) as input parameters, and the M-r was the model output. Results of numerical modelling indicated that ANN and SVR were highly capable of predicting the M-r of C&D materials subjected to FT cycles. Several supplementary analysis and verification phases were conducted to examine the reliability and precision of the developed models. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Research progress of the thermophysical and mechanical properties of concrete subjected to freeze-thaw cycles
    Zheng, Xinyu
    Wang, Yingrui
    Zhang, Shaoqi
    Xu, Fei
    Zhu, Xinping
    Jiang, Xi
    Zhou, Long
    Shen, Yi
    Chen, Qing
    Yan, Zhiguo
    Zhao, Weigang
    Zhu, Hehua
    Zhang, Yao
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 330
  • [22] STUDY OF BASIC PROPERTIES OF STANDARD CONCRETE SUBJECTED TO LONG FREEZE-THAW CYCLES
    PIGEON, M
    LEMAIRE, F
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 1980, 7 (03) : 407 - 420
  • [23] Research on Physical and Mechanics Properties of Metamorphic Sandstone Subjected to Freeze-thaw Cycles
    Jiang Yufeng
    Wu Guang
    Liu Fang
    2018 INTERNATIONAL CONFERENCE ON CIVIL, ARCHITECTURE AND DISASTER PREVENTION, 2019, 218
  • [24] Experimental study on mechanical properties and damage degradation mechanism of calcareous sandstone subjected to freeze-thaw cycles
    Han T.-L.
    Chen Y.-S.
    Shi J.-P.
    Li Z.-H.
    1802, Chinese Society of Civil Engineering (38): : 1802 - 1812
  • [25] Investigation of the thermal conductivity of soil subjected to freeze-thaw cycles using the artificial neural network model
    Orakoglu Firat, Muge Elif
    Atila, Orhan
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (14) : 8077 - 8093
  • [26] Investigation of slope deterioration mechanism under freeze-thaw cycles: centrifuge modelling
    Ng, Charles W. W.
    Wang, Yikai
    Zhang, Shuai
    Li, Zeyu
    Zhang, Qi
    Zhong, Haiyi
    CANADIAN GEOTECHNICAL JOURNAL, 2023, 60 (10) : 1532 - 1544
  • [27] Experimental investigation and finite element analysis on lateral behavior of reinforced concrete columns subjected to freeze-thaw cycles
    Zheng, Hao
    Wang, Zhuohan
    Li, Lei
    Wang, Wentao
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2023, 207
  • [28] Experimental research on seismic behavior of reinforced concrete columns subjected to freeze-thaw cycles
    Zheng S.
    Zhang Y.
    Pei P.
    Dong L.
    Zheng Y.
    Rong X.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2020, 41 (06): : 84 - 91
  • [29] Investigation on mechanical properties deterioration of concrete subjected to freeze–thaw cycles
    Ruifeng Xie
    Jianlin Yang
    Enpu Xie
    Scientific Reports, 12
  • [30] Experimental Investigation of the Variation of Concrete Pores under the Action of Freeze-Thaw Cycles
    Yuan, Jie
    Liu, Yang
    Li, Hongxia
    Yang, Changxi
    WORLD MULTIDISCIPLINARY CIVIL ENGINEERING-ARCHITECTURE-URBAN PLANNING SYMPOSIUM 2016, WMCAUS 2016, 2016, 161 : 583 - 588