Experimental investigation and modelling the deformation properties of demolition wastes subjected to freeze-thaw cycles using ANN and SVR

被引:46
|
作者
Ghorbani, Behnam [1 ]
Arulrajah, Arul [1 ]
Narsilio, Guillermo [2 ]
Horpibulsuk, Suksun [3 ,4 ]
机构
[1] Swinburne Univ Technol, Dept Civil & Construct Engn, Melbourne, Vic, Australia
[2] Univ Melbourne, Dept Infrastruct Engn, Melbourne, Vic, Australia
[3] Suranaree Univ Technol, Sch Civil Engn, 111 Univ Ave, Nakhon Ratchasima 30000, Thailand
[4] Suranaree Univ Technol, Ctr Excellence Innovat Sustainable Infrastruct De, 111 Univ Ave, Nakhon Ratchasima 30000, Thailand
基金
澳大利亚研究理事会;
关键词
Demolition waste; Pavement base/subbase; Freeze-thaw cycle; Resilient modulus; Artificial neural network; Support vector regression; SELF-CEMENTING PROPERTIES; RESILIENT MODULUS; PERMANENT DEFORMATION; RECYCLED CONSTRUCTION; BEARING CAPACITY; CONCRETE; STABILIZATION; FORMULATION; COMPACTION; STRENGTH;
D O I
10.1016/j.conbuildmat.2020.119688
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Construction and demolition (C&D) waste materials are widely being used as a pavement construction material. The aim of this research is to investigate the effect of freeze-thaw (FT) cycles on the deformation properties of C&D materials. Two artificial intelligence (AI) techniques, namely artificial neural network (ANN) and support vector regression (SVR) were developed for prediction of resilient modulus (M-r), which have been rarely used for modelling the behaviour of C&D materials. Laboratory repeated load triaxial (RLT) tests were performed on two types of C&D materials including recycled concrete aggregate (RCA) and crushed brick (CB) to investigate the permanent deformation and M-r. The influence of up to 20 FT cycles on the behaviour of C&D materials, for freezing to -15 degrees C and thawing to 20 degrees C, was investigated. It was observed that deformation properties of RCA improved consistently as the number of FT cycles increased. Increasing the number of FT cycles reduced the permanent deformation and increased the M-r of RCA. For CB, application of up to 10 FT cycles resulted in an increase of resilient modulus (M-r) and a decrease of permanent deformation. However, application of more than 10 FT cycles, i.e., 15 and 20 FT cycles, had detrimental effects on the deformation characteristics of CB. An ANN model, as well as SVR models with different kernels, were developed for predicting the M-r of C&D materials exposed to FT cycles and investigating the effect of test variables. The developed models included number of FT cycles (N-FT) and stress states, i.e., confining pressure (sigma(3)), and deviator stress (sigma(d)) as input parameters, and the M-r was the model output. Results of numerical modelling indicated that ANN and SVR were highly capable of predicting the M-r of C&D materials subjected to FT cycles. Several supplementary analysis and verification phases were conducted to examine the reliability and precision of the developed models. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Investigation on mechanical properties deterioration of concrete subjected to freeze-thaw cycles
    Xie, Ruifeng
    Yang, Jianlin
    Xie, Enpu
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Experimental investigation on the physical and mechanical properties deterioration of oil shale subjected to freeze-thaw cycles
    Hong-chao Zhao
    Xiao-lei Zhang
    Gang Han
    Hui Chen
    Arabian Journal of Geosciences, 2019, 12
  • [3] Experimental investigation on the physical and mechanical properties deterioration of oil shale subjected to freeze-thaw cycles
    Zhao, Hong-chao
    Zhang, Xiao-lei
    Han, Gang
    Chen, Hui
    ARABIAN JOURNAL OF GEOSCIENCES, 2019, 12 (16)
  • [4] Experimental Investigation on Fracture Behavior and Mechanical Properties of Red Sandstone Subjected to Freeze-Thaw Cycles
    Zhang, Xiao-Wu
    Xu, Jin-Hai
    Cao, Yue
    Sun, Lei
    Shaikh, Faiz
    SUSTAINABILITY, 2022, 14 (21)
  • [5] Experimental investigation of the mechanical properties of hydrophobic polymer-modified soil subjected to freeze-thaw cycles
    Xia, Weitong
    Wang, Qing
    Yu, Qingbo
    Yao, Meng
    Sun, Di
    Liu, Jing
    Wang, Zhou
    ACTA GEOTECHNICA, 2023, 18 (07) : 3623 - 3642
  • [6] Thermal Properties of Compost Biocover Subjected to Freeze-Thaw Cycles
    Moghbel, Farzad
    Fall, Mamadou
    JOURNAL OF COLD REGIONS ENGINEERING, 2018, 32 (03)
  • [7] Experimental research on dynamic properties of fly ash soil subjected to freeze-thaw cycles
    Wei, Hai-Bin
    Liu, Han-Bing
    Gao, Yi-Ping
    Fang, Ying
    Li, Chang-Yu
    Yantu Lixue/Rock and Soil Mechanics, 2007, 28 (05): : 1005 - 1008
  • [8] Experimental research on dynamic properties of fly ash soil subjected to freeze-thaw cycles
    Wei Hai-bin
    Liu Han-bing
    Gao Yi-ping
    Fang Ying
    Li Chang-yu
    ROCK AND SOIL MECHANICS, 2007, 28 (05) : 1005 - 1008
  • [9] Experimental investigation on dynamic compressive properties of SHCC after freeze-thaw cycles
    Guo, Weina
    Tian, Yupeng
    Bao, Jiuwen
    Wang, Bing
    Lei, Dongyi
    Zhang, Peng
    Cui, Yifei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 8357 - 8372
  • [10] Experimental study of fracture damage in concrete subjected to freeze-thaw cycles
    School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
    Harbin Gongcheng Daxue Xuebao, 2009, 1 (27-32):