MARKOV CHAIN MONTE CARLO INFERENCE FOR PROBABILISTIC LATENT TENSOR FACTORIZATION

被引:0
|
作者
Simsekli, Umut [1 ]
Cemgil, A. Taylan [1 ]
机构
[1] Bogazici Univ, Dept Comp Engn, TR-34342 Istanbul, Turkey
关键词
Probabilistic Latent Tensor Factorization (PLTF); Markov Chain Monte Carlo (MCMC); Space Alternating Data Augmentation (SADA);
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Probabilistic Latent Tensor Factorization (PLTF) is a recently proposed probabilistic framework for modeling multiway data. Not only the popular tensor factorization models but also any arbitrary tensor factorization structure can be realized by the PLTF framework. This paper presents Markov Chain Monte Carlo procedures (namely the Gibbs sampler) for making inference on the PLTF framework. We provide the abstract algorithms that are derived for the general case and the overall procedure is illustrated on both synthetic and real data.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Pseudo-marginal Markov Chain Monte Carlo for Nonnegative Matrix Factorization
    Du, Junfu
    Zhong, Mingjun
    NEURAL PROCESSING LETTERS, 2017, 45 (02) : 553 - 562
  • [22] Markov Chain Monte Carlo
    Henry, Ronnie
    EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298
  • [23] Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation
    Stathopoulos, Vassilios
    Girolami, Mark A.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1984):
  • [24] ASYMPTOTICALLY INDEPENDENT MARKOV SAMPLING: A NEW MARKOV CHAIN MONTE CARLO SCHEME FOR BAYESIAN INFERENCE
    Beck, James L.
    Zuev, Konstantin M.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2013, 3 (05) : 445 - 474
  • [25] Particle Markov Chain Monte Carlo Approach to Inference in Transient Surface Kinetics
    Iloska, Marija
    Boscoboinik, J. Anibal
    Wu, Qin
    Bugallo, Monica F.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2025, 21 (01) : 5 - 16
  • [27] PHAISTOS: A framework for Markov chain Monte Carlo simulation and inference of protein structure
    Boomsma, Wouter
    Frellsen, Jes
    Harder, Tim
    Bottaro, Sandro
    Johansson, Kristoffer E.
    Tian, Pengfei
    Stovgaard, Kasper
    Andreetta, Christian
    Olsson, Simon
    Valentin, Jan B.
    Antonov, Lubomir D.
    Christensen, Anders S.
    Borg, Mikael
    Jensen, Jan H.
    Lindorff-Larsen, Kresten
    Ferkinghoff-Borg, Jesper
    Hamelryck, Thomas
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2013, 34 (19) : 1697 - 1705
  • [28] Markov Chain Monte Carlo Inference of Parametric Dictionaries for Sparse Bayesian Approximations
    Chaspari, Theodora
    Tsiartas, Andreas
    Tsilifis, Panagiotis
    Narayanan, Shrikanth S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (12) : 3077 - 3092
  • [29] Manifold Markov chain Monte Carlo methods for Bayesian inference in diffusion models
    Graham, Matthew M.
    Thiery, Alexandre H.
    Beskos, Alexandros
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2022, 84 (04) : 1229 - 1256
  • [30] A fast asynchronous Markov chain Monte Carlo sampler for sparse Bayesian inference
    Atchade, Yves
    Wang, Liwei
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2024, 85 (05) : 1492 - 1516