Cenosphere Formation during Single-Droplet Combustion of Heavy Fuel Oil

被引:22
|
作者
Jiang, Long [1 ,3 ]
Elbaz, Ayman M. [1 ,4 ]
Guida, Paolo [1 ]
Al-Noman, Saeed Mohammed [2 ]
AlGhamdi, Ibrahim A. [2 ]
Saxena, Saumitra [1 ]
Roberts, William L. [1 ]
机构
[1] KAUST, Phys Sci & Engn Div, Clean Combust Res Ctr, Thuwal 239556900, Saudi Arabia
[2] Saudi Elect Co, Res & Dev Dept, Riyadh 11416, Saudi Arabia
[3] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R China
[4] Helwan Univ, Fac Engn Mataria, Cairo 11795, Egypt
关键词
ASPHALTENES; PYROLYSIS;
D O I
10.1021/acs.energyfuels.8b03632
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The current study aims to investigate cenosphere formation during single-droplet combustion of heavy fuel oil (HFO). A droplet generator was developed to produce freely falling monodisperse droplets uniformly. With the aid of high-speed imaging, droplet diameter was verified to be well controlled within the range of 390-698 mu m, and droplets spacing distance was sufficient to avoid droplet-droplet interactions. Impacts of operation conditions (initial HFO droplet size, temperature, and air co-flow rate) and asphaltene content on cenosphere formation in a drop tube furnace were then investigated. Three types of cenosphere morphology were observed by field emission scanning electron microscopy (SEM), namely, larger hollow globules, medium porous cenospheres, and smaller cenospheres with a perfectly spherical and smooth structure. The SEM results show that the mean diameter of collected cenospheres increased as initial droplet size and asphaltene content increased, while it decreased as temperature and air co-flow rate increased. Energy-dispersive X-ray spectroscopy results show that these parameters also significantly influenced the evolution of cenosphere surface elemental composition. All parameters show linear effects on the surface content of C, O, and S, excluding air co-flow rate. The increase of air co-flow temperature enhanced droplet combustion; conversely, larger initial droplet size and asphaltene content inhibited droplet combustion. The nonlinear effect of air co-flow rate indicates that it has an optimum rate for falling droplet combustion, as 90 slpm based on the current experimental setup. Eventually, our study proposed the pathway of cenosphere formation during the HFO droplet combustion.
引用
收藏
页码:1570 / 1581
页数:12
相关论文
共 50 条
  • [21] Analytical and numerical studies on a single-droplet evaporation and combustion under forced convection
    L. X. Zhou
    K. Li
    Acta Mechanica Sinica, 2015, 31 : 523 - 530
  • [22] Theoretical Single-Droplet Model for Particle Formation in Flame Spray Pyrolysis
    Ren, Yihua
    Cai, Jinzhi
    Pitsch, Heinz
    ENERGY & FUELS, 2021, 35 (02) : 1750 - 1759
  • [23] Experimental investigation on enhanced combustion of methanol/heavy fuel oil by droplet puffing at elevated temperatures
    Chen, Xiaoyu
    Long, Wuqiang
    Wang, Yang
    Xiao, Ge
    Dong, Pengbo
    Wang, Zixin
    Xi, Xi
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [24] ANALYSIS OF NO FORMATION IN SINGLE DROPLET COMBUSTION
    KESTEN, AS
    COMBUSTION SCIENCE AND TECHNOLOGY, 1972, 6 (1-2) : 115 - &
  • [26] A highly radiative combustion chamber for heavy fuel oil combustion
    Villasenor, R
    Escalera, R
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1998, 41 (20) : 3087 - 3097
  • [27] Behaviour of a heavy fuel oil droplet on a hot surface
    Slanciauskas, A
    Kalpokaite, R
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (5-6) : 1050 - 1057
  • [28] COMBUSTION OF HEAVY FUEL OIL - SOME OBSERVATIONS ON CARBONACEOUS DROPLET RESIDUES AND ON ASH FROM GAS STREAM
    BIRD, RJ
    SMALL, NJH
    JOURNAL OF THE INSTITUTE OF PETROLEUM, 1965, 51 (494): : 71 - &
  • [29] Cenosphere Formation and Combustion Characteristics of Single Droplets of Vacuum Residual Oils
    Setyawan, Hendrix Yulis
    Zhu, Mingming
    COMBUSTION SCIENCE AND TECHNOLOGY, 2025, 197 (01) : 59 - 76
  • [30] Cenosphere formation from heavy fuel oil: a numerical analysis accounting for the balance between porous shells and internal pressure
    Reddy, Vanteru M.
    Rahman, Mustafa M.
    Gandi, Appala N.
    Elbaz, Ayman M.
    Schrecengost, Robert A.
    Roberts, William L.
    COMBUSTION THEORY AND MODELLING, 2016, 20 (01) : 154 - 172