Harmonic Balance Method for Chaotic Dynamics in Fractional-Order Rossler Toroidal System

被引:2
|
作者
Zhu, Huijian [1 ,2 ]
机构
[1] S China Univ Technol, Sch Sci, Guangzhou 510640, Guangdong, Peoples R China
[2] Guangdong Polytech Normal Univ, Sch Electromech, Guangzhou 510635, Guangdong, Peoples R China
关键词
DIFFERENTIAL-EQUATIONS;
D O I
10.1155/2013/593856
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the problem of determining the conditions under which fractional order Rossler toroidal system can give rise to chaotic behavior. Based on the harmonic balance method, four detailed steps are presented for predicting the existence and the location of chaotic motions. Numerical simulations are performed to verify the theoretical analysis by straightforward computations.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Stability and dynamics of a stochastic discrete fractional-order chaotic system with short memory
    Jie Ran
    Jixiu Qiu
    Yonghui Zhou
    Advances in Continuous and Discrete Models, 2023
  • [42] Switching Synchronisation Control between Integer-order and Fractional-order Dynamics of a Chaotic System
    Borah, Manashita
    Roy, Binoy K.
    2017 INDIAN CONTROL CONFERENCE (ICC), 2017, : 456 - 461
  • [43] A New Method on Synchronization of Fractional-Order Chaotic Systems
    Wang, Zhiliang
    Zhang, Huaguang
    Li, Yongfeng
    Sun, Ning
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 3557 - +
  • [44] Synchronization of Fractional-Order Complex Chaotic System Using Active Control Method
    Du, Chuanhong
    Liu, Licai
    Shi, Shuaishuai
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 817 - 823
  • [45] Dynamic preserving method with changeable memory length of fractional-order chaotic system
    Xie, Wenxian
    Xu, Jianwen
    Cai, Li
    Lin, Zifei
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2017, 92 : 59 - 65
  • [46] The fractional-order unified chaotic system: A general cascade synchronization method and application
    An, Hongli
    Feng, Dali
    Sun, Li
    Zhu, Haixing
    AIMS MATHEMATICS, 2020, 5 (05): : 4345 - 4356
  • [47] Synchronization between fractional-order chaotic system and chaotic system of integer orders
    Zhou Ping
    Kuang Fei
    ACTA PHYSICA SINICA, 2010, 59 (10) : 6851 - 6858
  • [48] Complexity evolvement of a chaotic fractional-order financial system
    Xin Bao-Gui
    Chen Tong
    Liu Yan-Qin
    ACTA PHYSICA SINICA, 2011, 60 (04)
  • [49] Dynamic Analysis for a Fractional-Order Autonomous Chaotic System
    Zhang, Jiangang
    Nan, Juan
    Du, Wenju
    Chu, Yandong
    Luo, Hongwei
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [50] CHAOTIC AND PERIODIC BEHAVIOR IN A FRACTIONAL-ORDER BIOLOGICAL SYSTEM
    Roy-Layinde, T. O.
    Omoteso, K. A.
    Ogooluwa, D. O.
    Oladunjoye, H. T.
    Laoye, J. A.
    ACTA PHYSICA POLONICA B, 2020, 51 (09): : 1885 - 1904