Rodrigues formulas for the Macdonald polynomials

被引:21
|
作者
Lapointe, L
Vinet, L
机构
[1] Ctr. de Rech. Mathématiques, Université de Montréal, Montréal, Que. H3C 3J7
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/aima.1997.1662
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present formulas of Rodrigues type giving the Macdonald polynomials for arbitrary partitions lambda through the repeated application of creation operators B-k, k=1,..., l(lambda) on the constant 1. Three expressions for the creation operators are derived one from the other. When the last of these expressions is used, the associated Rodrigues formula readily implies the integrality of the (q, t)-Kostka coefficients. The proofs given in this paper rely on the connection between affine Hecke algebras and Macdonald polynomials. (C) 1997 Academic Press.
引用
收藏
页码:261 / 279
页数:19
相关论文
共 50 条
  • [1] Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials
    Corteel, Sylvie
    Haglund, Jim
    Mandelshtam, Olya
    Mason, Sarah
    Williams, Lauren
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (02):
  • [2] Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials
    Sylvie Corteel
    Jim Haglund
    Olya Mandelshtam
    Sarah Mason
    Lauren Williams
    Selecta Mathematica, 2022, 28
  • [3] On combinatorial formulas for Macdonald polynomials
    Lenart, Cristian
    ADVANCES IN MATHEMATICS, 2009, 220 (01) : 324 - 340
  • [4] Factorization formulas for Macdonald polynomials
    Descouensa, Francois
    Morita, Hideaki
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (02) : 395 - 410
  • [5] TABLEAUX FORMULAS FOR MACDONALD POLYNOMIALS
    Bergeron, Francois
    Haiman, Mark
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2013, 23 (04) : 833 - 852
  • [6] Recurrence formulas for Macdonald polynomials of type A
    Michel Lassalle
    Michael J. Schlosser
    Journal of Algebraic Combinatorics, 2010, 32 : 113 - 131
  • [7] Recurrence formulas for Macdonald polynomials of type A
    Lassalle, Michel
    Schlosser, Michael J.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (01) : 113 - 131
  • [8] Rodrigues' formulas for Jacobsthal-type polynomials
    Horadam, AF
    FIBONACCI QUARTERLY, 1997, 35 (04): : 361 - 370
  • [9] Pieri formulas for Macdonald’s spherical functions and polynomials
    J. F. van Diejen
    E. Emsiz
    Mathematische Zeitschrift, 2011, 269 : 281 - 292
  • [10] Comparing formulas for type GLn Macdonald polynomials - Supplement
    Guo, Weiying
    Ram, Arun
    ALGEBRAIC COMBINATORICS, 2022, 5 (05):