U-Net based deep learning bladder segmentation in CT urography

被引:53
|
作者
Ma, Xiangyuan [1 ,2 ,3 ]
Hadjiiski, Lubomir M. [1 ]
Wei, Jun [1 ]
Chan, Heang-Ping [1 ]
Cha, Kenny H. [1 ]
Cohan, Richard H. [1 ]
Caoili, Elaine M. [1 ]
Samala, Ravi [1 ]
Zhou, Chuan [1 ]
Lu, Yao [2 ,3 ]
机构
[1] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[2] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
bladder; computer-aided detection; CT urography; deep learning; segmentation; CONVOLUTION NEURAL-NETWORK; MULTIDETECTOR ROW CT; WALL SEGMENTATION; MASS;
D O I
10.1002/mp.13438
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesTo develop a U-Net-based deep learning approach (U-DL) for bladder segmentation in computed tomography urography (CTU) as a part of a computer-assisted bladder cancer detection and treatment response assessment pipeline. Materials and methodsA dataset of 173 cases including 81 cases in the training/validation set (42 masses, 21 with wall thickening, 18 normal bladders), and 92 cases in the test set (43 masses, 36 with wall thickening, 13 normal bladders) were used with Institutional Review Board approval. An experienced radiologist provided three-dimensional (3D) hand outlines for all cases as the reference standard. We previously developed a bladder segmentation method that used a deep learning convolution neural network and level sets (DCNN-LS) within a user-input bounding box. However, some cases with poor image quality or with advanced bladder cancer spreading into the neighboring organs caused inaccurate segmentation. We have newly developed an automated U-DL method to estimate a likelihood map of the bladder in CTU. The U-DL did not require a user-input box and the level sets for postprocessing. To identify the best model for this task, we compared the following models: (a) two-dimensional (2D) U-DL and 3D U-DL using 2D CT slices and 3D CT volumes, respectively, as input, (b) U-DLs using CT images of different resolutions as input, and (c) U-DLs with and without automated cropping of the bladder as an image preprocessing step. The segmentation accuracy relative to the reference standard was quantified by six measures: average volume intersection ratio (AVI), average percent volume error (AVE), average absolute volume error (AAVE), average minimum distance (AMD), average Hausdorff distance (AHD), and the average Jaccard index (AJI). As a baseline, the results from our previous DCNN-LS method were used. ResultsIn the test set, the best 2D U-DL model achieved AVI, AVE, AAVE, AMD, AHD, and AJI values of 93.49.5%, -4.2 +/- 14.2%, 9.2 +/- 11.5%, 2.7 +/- 2.5mm, 9.7 +/- 7.6mm, 85.0 +/- 11.3%, respectively, while the corresponding measures by the best 3D U-DL were 90.6 +/- 11.9%, -2.3 +/- 21.7%, 11.5 +/- 18.5%, 3.1 +/- 3.2mm, 11.4 +/- 10.0mm, and 82.6 +/- 14.2%, respectively. For comparison, the corresponding values obtained with the baseline method were 81.9 +/- 12.1%, 10.2 +/- 16.2%, 14.0 +/- 13.0%, 3.6 +/- 2.0mm, 12.8 +/- 6.1mm, and 76.2 +/- 11.8%, respectively, for the same test set. The improvement for all measures between the best U-DL and the DCNN-LS were statistically significant (P<0.001). ConclusionCompared to a previous DCNN-LS method, which depended on a user-input bounding box, the U-DL provided more accurate bladder segmentation and was more automated than the previous approach.
引用
收藏
页码:1752 / 1765
页数:14
相关论文
共 50 条
  • [21] Cochlear CT image segmentation based on u-net neural network
    Li, Cheng
    Li, Xiaojun
    Zhou, Rong
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2023, 16 (02)
  • [22] CT Image Segmentation of Rectal Tumor Based on U-Net Network
    Wang, Yu-Xue
    Xu, Chao
    Proceedings - 2021 2nd International Conference on Big Data and Informatization Education, ICBDIE 2021, 2021, : 69 - 72
  • [23] A Rectal CT Tumor Segmentation Method Based on Improved U-Net
    Dong, Haowei
    Zhang, Haifei
    Wu, Fang
    Qiu, Jianlin
    Zhang, Jian
    Wang, Haoyu
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (04)
  • [24] Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information
    Allah, Ahmed M. Gab
    Sarhan, Amany M.
    Elshennawy, Nada M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [25] Retinal Vessel Segmentation Method Based on Improved Deep U-Net
    Cai, Yiheng
    Li, Yuanyuan
    Gao, Xurong
    Guo, Yajun
    BIOMETRIC RECOGNITION (CCBR 2019), 2019, 11818 : 321 - 328
  • [26] EnRDeA U-Net Deep Learning of Semantic Segmentation on Intricate Noise Roads
    Yu, Xiaodong
    Kuan, Ta-Wen
    Tseng, Shih-Pang
    Chen, Ying
    Chen, Shuo
    Wang, Jhing-Fa
    Gu, Yuhang
    Chen, Tuoli
    ENTROPY, 2023, 25 (07)
  • [27] Segmentation of Mouse Tibia on MRI using Deep Learning U-Net Models
    Kushwaha, Aman
    Mourad, Rami F.
    Heist, Kevin
    Malyarenko, Dariya
    Chan, Heang-Ping
    Chenevert, Thomas L.
    Hadjiiski, Lubomir M.
    Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 2023, 12465
  • [28] Geographic Atrophy Lesion Segmentation Using a Deep Learning Network (U-net)
    Patil, Jasmine
    Kawczynski, Michael
    Gao, Simon S.
    Coimbra, Alexandre Fernandez
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [29] Deep Learning for Carotid Plaque Segmentation using a Dilated U-Net Architecture
    Meshram, Nirvedh H.
    Mitchell, Carol C.
    Wilbrand, Stephanie
    Dempsey, Robert J.
    Varghese, Tomy
    ULTRASONIC IMAGING, 2020, 42 (4-5) : 221 - 230
  • [30] A Comparison of U-Net Series for CT Pancreas Segmentation
    Zheng, Linya
    Li, Ji
    Zhang, Fan
    Shi, Hong
    Chen, Yinran
    Luo, Xiongbiao
    MEDICAL IMAGING 2023, 2023, 12464