U-Net based deep learning bladder segmentation in CT urography

被引:53
|
作者
Ma, Xiangyuan [1 ,2 ,3 ]
Hadjiiski, Lubomir M. [1 ]
Wei, Jun [1 ]
Chan, Heang-Ping [1 ]
Cha, Kenny H. [1 ]
Cohan, Richard H. [1 ]
Caoili, Elaine M. [1 ]
Samala, Ravi [1 ]
Zhou, Chuan [1 ]
Lu, Yao [2 ,3 ]
机构
[1] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[2] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
bladder; computer-aided detection; CT urography; deep learning; segmentation; CONVOLUTION NEURAL-NETWORK; MULTIDETECTOR ROW CT; WALL SEGMENTATION; MASS;
D O I
10.1002/mp.13438
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesTo develop a U-Net-based deep learning approach (U-DL) for bladder segmentation in computed tomography urography (CTU) as a part of a computer-assisted bladder cancer detection and treatment response assessment pipeline. Materials and methodsA dataset of 173 cases including 81 cases in the training/validation set (42 masses, 21 with wall thickening, 18 normal bladders), and 92 cases in the test set (43 masses, 36 with wall thickening, 13 normal bladders) were used with Institutional Review Board approval. An experienced radiologist provided three-dimensional (3D) hand outlines for all cases as the reference standard. We previously developed a bladder segmentation method that used a deep learning convolution neural network and level sets (DCNN-LS) within a user-input bounding box. However, some cases with poor image quality or with advanced bladder cancer spreading into the neighboring organs caused inaccurate segmentation. We have newly developed an automated U-DL method to estimate a likelihood map of the bladder in CTU. The U-DL did not require a user-input box and the level sets for postprocessing. To identify the best model for this task, we compared the following models: (a) two-dimensional (2D) U-DL and 3D U-DL using 2D CT slices and 3D CT volumes, respectively, as input, (b) U-DLs using CT images of different resolutions as input, and (c) U-DLs with and without automated cropping of the bladder as an image preprocessing step. The segmentation accuracy relative to the reference standard was quantified by six measures: average volume intersection ratio (AVI), average percent volume error (AVE), average absolute volume error (AAVE), average minimum distance (AMD), average Hausdorff distance (AHD), and the average Jaccard index (AJI). As a baseline, the results from our previous DCNN-LS method were used. ResultsIn the test set, the best 2D U-DL model achieved AVI, AVE, AAVE, AMD, AHD, and AJI values of 93.49.5%, -4.2 +/- 14.2%, 9.2 +/- 11.5%, 2.7 +/- 2.5mm, 9.7 +/- 7.6mm, 85.0 +/- 11.3%, respectively, while the corresponding measures by the best 3D U-DL were 90.6 +/- 11.9%, -2.3 +/- 21.7%, 11.5 +/- 18.5%, 3.1 +/- 3.2mm, 11.4 +/- 10.0mm, and 82.6 +/- 14.2%, respectively. For comparison, the corresponding values obtained with the baseline method were 81.9 +/- 12.1%, 10.2 +/- 16.2%, 14.0 +/- 13.0%, 3.6 +/- 2.0mm, 12.8 +/- 6.1mm, and 76.2 +/- 11.8%, respectively, for the same test set. The improvement for all measures between the best U-DL and the DCNN-LS were statistically significant (P<0.001). ConclusionCompared to a previous DCNN-LS method, which depended on a user-input bounding box, the U-DL provided more accurate bladder segmentation and was more automated than the previous approach.
引用
收藏
页码:1752 / 1765
页数:14
相关论文
共 50 条
  • [1] Bladder Wall Segmentation using U-Net based Deep Learning
    Ivanitskiy, Michael
    Hadjiiski, Lubomir
    Chan, Heang-Ping
    Samala, Ravi
    Cohan, Richard H.
    Caoili, Elaine M.
    Weizer, Alon
    Alva, Ajjai
    Wei, Jun
    Zhou, Chuan
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [2] Development of Deep Learning with RDA U-Net Network for Bladder Cancer Segmentation
    Lee, Ming-Chan
    Wang, Shao-Yu
    Pan, Cheng-Tang
    Chien, Ming-Yi
    Li, Wei-Ming
    Xu, Jin-Hao
    Luo, Chi-Hung
    Shiue, Yow-Ling
    CANCERS, 2023, 15 (04)
  • [3] Rock CT Image Segmentation Based on Transfer Learning and U-Net
    Shan, Liqun
    Wang, Yulin
    Ren, Hongwei
    Liu, Yanchang
    Liu, Chengqian
    Zhang, Xiaorou
    Wang, Xiangyu
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1057 - 1061
  • [4] Deep Learning Based Cell Segmentation Using Cascaded U-Net Models
    Bakir, Mehmet Emin
    Keles, Hacer Yalim
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [5] Automatic Liver Segmentation with CT Images based on 3D U-net Deep Learning Approach
    Su, Ting-Yu
    Yang, Wei-Tse
    Cheng, Tsu-Chi
    He, Yi-Fei
    Fang, Yu-Hua
    INTERNATIONAL FORUM ON MEDICAL IMAGING IN ASIA 2019, 2019, 11050
  • [6] Research on Segmentation Algorithm for Vertebral CT Images Based on Spatial Configuration-Net and U-Net Deep Learning Model
    Yang, Zhihao
    Jia, Gefei
    Wang, Shibo
    Wang, Yutao
    Bai, Guoyan
    Tian, Siyu
    Tang, Shangli
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 236 - 241
  • [7] Deep Q Learning Driven CT Pancreas Segmentation With Geometry-Aware U-Net
    Man, Yunze
    Huang, Yangsibo
    Feng, Junyi
    Li, Xi
    Wu, Fei
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) : 1971 - 1980
  • [8] Image Segmentation of Rectal Tumor Based on Improved U-Net Model with Deep Learning
    Faguo Zhou
    Yuansheng Ye
    Yanan Song
    Journal of Signal Processing Systems, 2022, 94 : 1145 - 1157
  • [9] Image Segmentation of Rectal Tumor Based on Improved U-Net Model with Deep Learning
    Zhou, Faguo
    Ye, Yuansheng
    Song, Yanan
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2022, 94 (11): : 1145 - 1157
  • [10] Automatic Skeleton Segmentation in CT Images Based on U-Net
    Milara, Eva
    Gomez-Grande, Adolfo
    Sarandeses, Pilar
    Seiffert, Alexander P.
    Gomez, Enrique J.
    Sanchez-Gonzalez, Patricia
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (05): : 2390 - 2400