Prediction of long-term memory scores in MCI based on resting-state fMRI

被引:43
|
作者
Meskaldji, Djalel-Eddine [1 ,2 ,3 ]
Preti, Maria Giulia [1 ,2 ]
Bolton, Thomas A. W. [1 ,2 ]
Montandon, Marie-Louise [4 ,5 ]
Rodriguez, Cristelle [6 ]
Morgenthaler, Stephan [3 ]
Giannakopoulos, Panteleimon [6 ]
Haller, Sven [7 ,8 ,9 ,10 ]
Van De Ville, Dimitri [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Bioengn, Lausanne, Switzerland
[2] Univ Geneva, Dept Radiol & Med Informat, Geneva, Switzerland
[3] Ecole Polytech Fed Lausanne, Inst Math, Lausanne, Switzerland
[4] Univ Hosp Geneva, Div Diagnost, Geneva, Switzerland
[5] Univ Hosp Geneva, Div Intervent Neuroradiol, Geneva, Switzerland
[6] Univ Geneva, Dept Psychiat, Geneva, Switzerland
[7] Affidea CDRC Ctr Diagnost Radiol Carouge, Geneva, Switzerland
[8] Uppsala Univ, Dept Surg Sci, Radiol, Uppsala, Sweden
[9] Univ Hosp Freiburg, Dept Neuroradiol, Freiburg, Germany
[10] Univ Geneva, Fac Med, Geneva, Switzerland
基金
瑞士国家科学基金会;
关键词
Functional brain connectivity; Cross-validation partial least square regression; Extreme value modeling; Long term memory; Mild cognitive impairment; Medial temporal lobe; MILD COGNITIVE IMPAIRMENT; LEAST-SQUARES REGRESSION; DEFAULT-MODE NETWORK; FUNCTIONAL CONNECTIVITY; ALZHEIMERS-DISEASE; PRINCIPAL COMPONENT; BRAIN NETWORKS; SCALE; THALAMUS; CORTEX;
D O I
10.1016/j.nicl.2016.10.004
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Resting-state functional MRI (rs-fMRI) opens a window on large-scale organization of brain function. However, establishing relationships between resting-state brain activity and cognitive or clinical scores is still a difficult task, in particular in terms of prediction as would be meaningful for clinical applications such as early diagnosis of Alzheimer's disease. In this work, we employed partial least square regression under cross-validation scheme to predict episodic memory performance from functional connectivity (FC) patterns in a set of fifty-five MCI subjects for whom rs-fMRI acquisition and neuropsychological evaluation was carried out. We show that a newly introduced FC measure capturing the moments of anti-correlation between brain areas, discordance, contains key information to predict long-term memory scores in MCI patients, and performs better than standard measures of correlation to do so. Our results highlighted that stronger discordance within default mode network (DMN) areas, as well as across DMN, attentional and limbic networks, favor episodic memory performance in MCI. (C) 2016 The Authors. Published by Elsevier B.V.
引用
收藏
页码:785 / 795
页数:11
相关论文
共 50 条
  • [41] Quantitative Prediction of Individual Psychopathology in Trauma Survivors Using Resting-State fMRI
    Qiyong Gong
    Lingjiang Li
    Mingying Du
    William Pettersson-Yeo
    Nicolas Crossley
    Xun Yang
    Jing Li
    Xiaoqi Huang
    Andrea Mechelli
    Neuropsychopharmacology, 2014, 39 : 681 - 687
  • [42] Quantitative Prediction of Individual Psychopathology in Trauma Survivors Using Resting-State fMRI
    Gong, Qiyong
    Li, Lingjiang
    Du, Mingying
    Pettersson-Yeo, William
    Crossley, Nicolas
    Yang, Xun
    Li, Jing
    Huang, Xiaoqi
    Mechelli, Andrea
    NEUROPSYCHOPHARMACOLOGY, 2014, 39 (03) : 681 - 687
  • [43] Machine learning in resting-state fMRI analysis
    Khosla, Meenakshi
    Jamison, Keith
    Ngo, Gia H.
    Kuceyeski, Amy
    Sabuncu, Mert R.
    MAGNETIC RESONANCE IMAGING, 2019, 64 : 101 - 121
  • [44] Phenotyping Superagers Using Resting-State fMRI
    de Godoy, L. L.
    Studart-Neto, A.
    de Paula, D. R.
    Green, N.
    Halder, A.
    Arantes, P.
    Chaim, K. T.
    Moraes, N. C.
    Yassuda, M. S.
    Nitrini, R.
    Dresler, M.
    Leite, C. da Costa
    Panovska-Griffiths, J.
    Soddu, A.
    Bisdas, S.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2023, 44 (04) : 424 - 433
  • [45] Resting-state fMRI in primary Sjogren syndrome
    Xing, Wu
    Shi, Wei
    Leng, Yueshuang
    Sun, Xianting
    Guan, Tingting
    Liao, Weihua
    Wang, Xiaoyi
    ACTA RADIOLOGICA, 2018, 59 (09) : 1091 - 1096
  • [46] Editorial: Origins of the Resting-State fMRI Signal
    Chen, J. Jean
    Herman, Peter
    Keilholz, Shella
    Thompson, Garth J.
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [47] Explicability in resting-state fMRI for gender classification
    Raison, Adrien
    Bourdon, Pascal
    Habas, Christophe
    Helbert, David
    2021 SIXTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME), 2021, : 5 - 8
  • [48] Resting-State fMRI and Developmental Systems Neuroscience
    Uddin, Lucina Q.
    BIOLOGICAL PSYCHIATRY, 2012, 71 (08) : 22S - 22S
  • [49] Resting-state fMRI in the Human Connectome Project
    Smith, Stephen M.
    Beckmann, Christian F.
    Andersson, Jesper
    Auerbach, Edward J.
    Bijsterbosch, Janine
    Douaud, Gwenaelle
    Duff, Eugene
    Feinberg, David A.
    Griffanti, Ludovica
    Harms, Michael P.
    Kelly, Michael
    Laumann, Timothy
    Miller, Karla L.
    Moeller, Steen
    Petersen, Steve
    Power, Jonathan
    Salimi-Khorshidi, Gholamreza
    Snyder, Abraham Z.
    Vu, An T.
    Woolrich, Mark W.
    Xu, Junqian
    Yacoub, Essa
    Ugurbil, Kamil
    Van Essen, David C.
    Glasser, Matthew F.
    NEUROIMAGE, 2013, 80 : 144 - 168
  • [50] EEG coherence related to fMRI resting state synchrony in long-term abstinent alcoholics
    Cardenas, Valerie A.
    Price, Mathew
    Fein, George
    NEUROIMAGE-CLINICAL, 2018, 17 : 481 - 490