Weighted progressive interpolation of Loop subdivision surfaces

被引:33
|
作者
Deng, Chongyang [1 ,2 ]
Ma, Weiyin [2 ]
机构
[1] Hangzhou Dianzi Univ, Inst Appl Math & Engn Computat, Hangzhou 310018, Zhejiang, Peoples R China
[2] City Univ Hong Kong, Dept Mech & Biomed Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Arbitrary topology mesh; Progressive interpolation; Surface interpolation; Loop subdivision surface; MESHES; SCHEME;
D O I
10.1016/j.cad.2011.12.001
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper proposes a weighted progressive method for constructing a Loop subdivision surface interpolating a given mesh. The convergent rate of the weighted progressive interpolation can be controlled by adjusting the weight of the iteration. For different weights in the available range, the limit meshes are the same as that of the reverse solution by directly solving a linear system. The theoretical value for the optimal weight is given based on the smallest eigenvalue of the collocation matrix. An appropriate value of the weight is assigned based on both theoretical analysis and numerical experiments. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:424 / 431
页数:8
相关论文
共 50 条
  • [11] Local progressive interpolation for subdivision surface fitting
    Zhao, Yu
    Lin, Hongwei
    Bao, Hujun
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2012, 49 (08): : 1699 - 1707
  • [12] An Image Interpolation Method Based on Weighted Subdivision
    Liu, Cheng-ming
    Pang, Hai-bo
    Ren, Liang-pin
    Zhao, Zhe
    Zhang, Shu-yan
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (04)
  • [13] Taxonomy of interpolation constraints on recursive subdivision surfaces
    Nasri, AH
    Sabin, MA
    VISUAL COMPUTER, 2002, 18 (5-6): : 382 - 403
  • [14] Taxonomy of interpolation constraints on recursive subdivision surfaces
    Ahmad H. Nasri
    Malcolm A. Sabin
    The Visual Computer, 2002, 18 : 382 - 403
  • [15] Error bounds for Loop subdivision surfaces
    Zhou, Guorong
    Zeng, Xiao-Ming
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (03) : 688 - 703
  • [16] A Fast and Accurate Dihedral Interpolation Loop Subdivision Scheme
    Shi, Zhuo
    An, Yalei
    Wang, Zhongshuai
    Yu, Ke
    Zhong, Si
    Lan, Rushi
    Luo, Xiaonan
    NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
  • [17] Conjugate-Gradient Progressive-Iterative Approximation for Loop and Catmull-Clark Subdivision Surface Interpolation
    Yusuf Fatihu Hamza
    Hong-Wei Lin
    Journal of Computer Science and Technology, 2022, 37 : 487 - 504
  • [18] Conjugate-Gradient Progressive-Iterative Approximation for Loop and Catmull-Clark Subdivision Surface Interpolation
    Hamza, Yusuf Fatihu
    Lin, Hong-Wei
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2022, 37 (02) : 487 - 504
  • [19] Fairing recursive subdivision surfaces with curve interpolation constraints
    Nasri, AH
    Kim, TW
    Lee, K
    INTERNATIONAL CONFERENCE ON SHAPE MODELING AND APPLICATIONS, PROCEEDING, 2001, : 49 - +
  • [20] On the use of loop subdivision surfaces for surrogate geometry
    Persson, Per-Olof
    Aftosmis, Michael J.
    Haimes, Robert
    PROCEEDINGS OF THE 15TH INTERNATIONAL MESHING ROUNDTABLE, 2006, : 375 - 392