Witt groups of smooth projective quadrics

被引:2
|
作者
Xie, Heng [1 ,2 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[2] Berg Univ Wuppertal, Fachgrp Math & Informat, D-42119 Wuppertal, Germany
基金
英国工程与自然科学研究理事会;
关键词
Witt groups; Quadrics; Semi-orthogonal decomposition; Clifford algebras; HERMITIAN K-THEORY; LOCALIZATION; CATEGORIES; ALGEBRAS;
D O I
10.1016/j.aim.2019.01.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a commutative ring containing 1/2. In this paper, we construct exact sequences connecting Witt groups of smooth projective quadrics over k and Clifford algebras. The exact sequences have an application to a classical problem in quadratic form theory: the Witt kernel of function fields of quadrics. We also apply the exact sequences to compute Witt groups of certain kinds of smooth projective quadrics. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:70 / 123
页数:54
相关论文
共 50 条
  • [1] On the Witt groups of projective bundles and split quadrics: geometric reasoning
    Nenashev, Alexander
    JOURNAL OF K-THEORY, 2009, 3 (03) : 533 - 546
  • [2] Commutative actions on smooth projective quadrics
    Borovik, Viktoriia
    Gaifullin, Sergey
    Trushin, Anton
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (12) : 5468 - 5476
  • [3] Unramified cohomology and Witt groups of anisotropic Pfister quadrics
    Sujatha, R
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (06) : 2341 - 2358
  • [4] WITT GROUPS OF REAL PROJECTIVE SURFACES
    SUJATHA, R
    MATHEMATISCHE ANNALEN, 1990, 288 (01) : 89 - 101
  • [5] THE WITT RING OF A SMOOTH PROJECTIVE CURVE OVER A FINITE FIELD
    Funk, Jeanne M.
    Hoobler, Raymond T.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (09) : 3731 - 3735
  • [6] Morava K-theory of orthogonal groups and motives of projective quadrics
    Geldhauser, Nikita
    Lavrenov, Andrei
    Petrov, Victor
    Sechin, Pavel
    ADVANCES IN MATHEMATICS, 2024, 446
  • [7] The fundamental group scheme of a smooth projective variety over a ring of Witt vectors
    Mehta, V. B.
    Subramanian, S.
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2013, 28A : 341 - 351
  • [8] Chow-Witt rings of split quadrics
    Hornbostel, Jens
    Xie, Heng
    Zibrowius, Marcus
    MOTIVIC HOMOTOPY THEORY AND REFINED ENUMERATIVE GEOMETRY, 2020, 745 : 123 - 161
  • [9] Projective quadrics and orbital elements
    de Capel, Alberto J. Marin Fdez
    Granero, Miguel Angel Sanchez
    ASTROPHYSICS AND SPACE SCIENCE, 2025, 370 (03)
  • [10] HOMOLOGICAL PROJECTIVE DUALITY FOR QUADRICS
    Kuznetsov, Alexander
    Perry, Alexander
    JOURNAL OF ALGEBRAIC GEOMETRY, 2021, 30 (03) : 457 - 476