Projective quadrics and orbital elements

被引:0
|
作者
de Capel, Alberto J. Marin Fdez [1 ]
Granero, Miguel Angel Sanchez [1 ]
机构
[1] Univ Almeria, Dept Math, Ctra Sacramento, Almeria 04120, Spain
关键词
Celestial mechanics; Orbital elements; Reference systems; Projective quadric; Eigenvalues; Eigenvectors;
D O I
10.1007/s10509-025-04420-z
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Due to the fact that Keplerian orbits are conic sections, projective geometry gives a description of orbits based on projective hyperquadric properties. Using matrix algebra to describe hyperquadrics allows the construction of a new set of orbital elements using the eigenvalues and eigenvectors of the improper hyperquadric matrix and the construction of reference systems associated with the orbit. It is possible to work directly with the orbit in Cartesian coordinates in the three-dimensional space as a 4x4 matrix, constructing the quadric associated with the orbital conic.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] HOMOLOGICAL PROJECTIVE DUALITY FOR QUADRICS
    Kuznetsov, Alexander
    Perry, Alexander
    JOURNAL OF ALGEBRAIC GEOMETRY, 2021, 30 (03) : 457 - 476
  • [2] Commutative actions on smooth projective quadrics
    Borovik, Viktoriia
    Gaifullin, Sergey
    Trushin, Anton
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (12) : 5468 - 5476
  • [3] Witt groups of smooth projective quadrics
    Xie, Heng
    ADVANCES IN MATHEMATICS, 2019, 346 : 70 - 123
  • [4] Projective Homogeneous Varieties Birational to Quadrics
    MacDonald, Mark L.
    DOCUMENTA MATHEMATICA, 2009, 14 : 47 - 66
  • [5] Holomorphic isometric embeddings of the projective space into quadrics
    Yasuyuki Nagatomo
    Geometriae Dedicata, 2022, 216
  • [6] Projective quadrics, poles, polars, and legendre transformations
    Pappas, RC
    CLIFFORD (GEOMETRIC) ALGEBRAS WITH APPLICATIONS TO PHYSICS, MATHEMATICS, AND ENGINEERING, 1996, : 441 - 448
  • [7] VARIETY OF SINGULAR QUADRICS CONTAINING A PROJECTIVE CURVE
    Kadikoeylue, Irfan
    ANNALES DE L INSTITUT FOURIER, 2019, 69 (04) : 1879 - 1896
  • [8] Holomorphic isometric embeddings of the projective space into quadrics
    Nagatomo, Yasuyuki
    GEOMETRIAE DEDICATA, 2022, 216 (03)
  • [9] HOLOMORPHIC ISOMETRIC EMBEDDINGS OF THE PROJECTIVE LINE INTO QUADRICS
    Macia, Oscar
    Nagatomo, Yasuyuki
    Takahashi, Masaro
    TOHOKU MATHEMATICAL JOURNAL, 2017, 69 (04) : 525 - 545
  • [10] INFINITESIMAL RIGIDITY OF PROJECTIVE SPACES AND COMPLEX QUADRICS
    GASQUI, J
    GOLDSCHMIDT, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 396 : 87 - 121