Unsupervised deep generative adversarial based methodology for automatic fault detection

被引:0
|
作者
Verstraete, D. B. [1 ]
Modarres, M. [1 ]
Lopez Drognett, E. [1 ,2 ]
Ferrada, A. N. [2 ]
Meruane, V. [2 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] Univ Chile, Santiago, Chile
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
System health management is of upmost importance with today's sensor integrated systems where a constant stream of data is available to feed information about a system's health. Traditional methods to assess this health focus on supervised learning of these fault classes. This requires labeling sometimes millions of points of data and is often laborious to complete. Additionally, once the data is labeled, hand-crafted feature extraction and selection methods are used to identify Which are indicators of the fault signals. This process requires expert knowledge to complete. An unsupervised generative adversarial network based methodology is proposed to address this problem. The proposed methodology comprises of a deep convolutional Generative Adversarial Network (GAN) for automatic high-level feature learning as an input to clustering algorithms to predict a system's faulty and baseline states. This methodology was applied to a public data set of rolling element vibration data from a rotary equipment test rig. Wavelet transform representations of the raw vibration signal were used as an input to the deep unsupervised generative adversarial network based methodology for fault classification. The results show that the proposed methodology-is robust enough to predict the presence of faults without any prior knowledge of their signals.
引用
收藏
页码:1051 / 1056
页数:6
相关论文
共 50 条
  • [31] Unsupervised Learning with Generative Adversarial Network for Automatic Tire Defect Detection from X-ray Images
    Wang, Yilin
    Zhang, Yulong
    Zheng, Li
    Yin, Liedong
    Chen, Jinshui
    Lu, Jiangang
    SENSORS, 2021, 21 (20)
  • [32] Automatic tunnel lining crack detection via deep learning with generative adversarial network-based data augmentation
    Zhou, Zhong
    Zhang, Junjie
    Gong, Chenjie
    Wu, Wei
    UNDERGROUND SPACE, 2023, 9 : 140 - 154
  • [33] Publisher Correction: Unsupervised anomaly detection with generative adversarial networks in mammography
    Seungju Park
    Kyung Hwa Lee
    Beomseok Ko
    Namkug Kim
    Scientific Reports, 13
  • [34] Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
    Schlegl, Thomas
    Seeboeck, Philipp
    Waldstein, Sebastian M.
    Schmidt-Erfurth, Ursula
    Langs, Georg
    INFORMATION PROCESSING IN MEDICAL IMAGING (IPMI 2017), 2017, 10265 : 146 - 157
  • [35] Unsupervised anomaly detection for underwater gliders using generative adversarial networks
    Wu, Peng
    Harris, Catherine A.
    Salavasidis, Georgios
    Lorenzo-Lopez, Alvaro
    Kamarudzaman, Izzat
    Phillips, Alexander B.
    Thomas, Giles
    Anderlini, Enrico
    Engineering Applications of Artificial Intelligence, 2021, 104
  • [36] Unsupervised anomaly detection for underwater gliders using generative adversarial networks
    Wu, Peng
    Harris, Catherine A.
    Salavasidis, Georgios
    Lorenzo-Lopez, Alvaro
    Kamarudzaman, Izzat
    Phillips, Alexander B.
    Thomas, Giles
    Anderlini, Enrico
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 104
  • [37] Anomaly Detection of Railway Catenary Based on Deep Convolutional Generative Adversarial Networks
    Yang, Pei
    Jin, Weidong
    Tang, Peng
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 1366 - 1370
  • [38] Conditional Generative Adversarial Network for Intrusion Detection System Based on Deep Learning
    Huang, Zhen
    Xiang, Yong
    2024 16TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, ICCAE 2024, 2024, : 237 - 241
  • [39] Deep reinforcement learning based Evasion Generative Adversarial Network for botnet detection
    Randhawa, Rizwan Hamid
    Aslam, Nauman
    Alauthman, Mohammad
    Khalid, Muhammad
    Rafiq, Husnain
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 150 : 294 - 302
  • [40] Deep unsupervised learning for image super-resolution with generative adversarial network
    Lin, Guimin
    Wu, Qingxiang
    Chen, Liang
    Qiu, Lida
    Wang, Xuan
    Liu, Tianjian
    Chen, Xiyao
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 68 : 88 - 100