Projected nonsymmetric algebraic Riccati equations and refining estimates of invariant and deflating subspaces

被引:3
|
作者
Fan, Hung-Yuan [1 ]
Chu, Eric King-wah [2 ]
机构
[1] Natl Taiwan Normal Univ, Dept Math, Taipei 116, Taiwan
[2] Monash Univ, Sch Math Sci, Bldg 28, Clayton, Vic 3800, Australia
关键词
Deflating subspace; Invariant subspace; Large-scale problem; Nonsymmetric algebraic Riccati equation; Sparse matrix; Sylvester equation; BLOCK-ELIMINATION; MATRICES;
D O I
10.1016/j.cam.2016.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical solution of the projected nonsymmetric algebraic Riccati equations or their associated Sylvester equations via Newton's method, arising in the refinement of estimates of invariant (or deflating subspaces) for a large and sparse real matrix A (or pencil A AB). The engine of the method is the inversion of the matrix P(2)P(2)(T)A - gamma I-n or Pl2Pl2T (A - gamma B), for some orthonormal P-2 or P-l2 from R-nx(n m), making use of the structures in A or A - lambda B and the Sherman-Morrison-Woodbury formula. Our algorithms are efficient, under appropriate assumptions, as shown in our error analysis and illustrated by numerical examples. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:70 / 86
页数:17
相关论文
共 50 条
  • [31] COMPUTABLE ERROR-ESTIMATES FOR NEWTON ITERATIONS FOR REFINING INVARIANT SUBSPACES
    NAIR, MT
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1990, 21 (12): : 1049 - 1054
  • [32] A class of iterative methods for solving nonsymmetric algebraic Riccati equations arising in transport theory
    Lin, Yiqin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (12) : 3046 - 3051
  • [33] Solving Time-Varying Nonsymmetric Algebraic Riccati Equations With Zeroing Neural Dynamics
    Simos, Theodore E. E.
    Katsikis, Vasilios N. N.
    Mourtas, Spyridon D. D.
    Stanimirovic, Predrag S. S.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (10): : 6575 - 6587
  • [34] Fast iterative schemes for nonsymmetric algebraic Riccati equations arising from transport theory
    Bai, Zhong-Zhi
    Gao, Yong-Hua
    Lu, Lin-Zhang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02): : 804 - 818
  • [35] A modified simple iterative method for nonsymmetric algebraic Riccati equations arising in transport theory
    Bao, Liang
    Lin, Yiqin
    Wei, Yimin
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (02) : 1499 - 1504
  • [36] A subspace shift technique for nonsymmetric algebraic Riccati equations associated with an M-matrix
    Iannazzo, Bruno
    Poloni, Federico
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (03) : 440 - 452
  • [37] Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for M-matrices
    Guo, CH
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) : 225 - 242
  • [38] The double deflating technique for irreducible singular M-matrix algebraic Riccati equations in the critical case
    Dong, Liqiang
    Li, Jicheng
    Li, Guo
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (08): : 1653 - 1684
  • [39] On the solution of the operator Riccati equations and invariant subspaces in the weighted Bergman space of the unit ball
    Tapdigoglu, Ramiz
    Gurdal, Mehmet
    Sari, Nur
    FILOMAT, 2023, 37 (21) : 7303 - 7310
  • [40] SOR-based alternately linearized implicit iteration method for nonsymmetric algebraic Riccati equations
    Du, Chunjuan
    Yan, Tongxin
    AIMS MATHEMATICS, 2023, 8 (09): : 19876 - 19891