Projected nonsymmetric algebraic Riccati equations and refining estimates of invariant and deflating subspaces

被引:3
|
作者
Fan, Hung-Yuan [1 ]
Chu, Eric King-wah [2 ]
机构
[1] Natl Taiwan Normal Univ, Dept Math, Taipei 116, Taiwan
[2] Monash Univ, Sch Math Sci, Bldg 28, Clayton, Vic 3800, Australia
关键词
Deflating subspace; Invariant subspace; Large-scale problem; Nonsymmetric algebraic Riccati equation; Sparse matrix; Sylvester equation; BLOCK-ELIMINATION; MATRICES;
D O I
10.1016/j.cam.2016.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical solution of the projected nonsymmetric algebraic Riccati equations or their associated Sylvester equations via Newton's method, arising in the refinement of estimates of invariant (or deflating subspaces) for a large and sparse real matrix A (or pencil A AB). The engine of the method is the inversion of the matrix P(2)P(2)(T)A - gamma I-n or Pl2Pl2T (A - gamma B), for some orthonormal P-2 or P-l2 from R-nx(n m), making use of the structures in A or A - lambda B and the Sherman-Morrison-Woodbury formula. Our algorithms are efficient, under appropriate assumptions, as shown in our error analysis and illustrated by numerical examples. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:70 / 86
页数:17
相关论文
共 50 条
  • [1] Refining estimates of invariant and deflating subspaces for large and sparse matrices and pencils
    Hung-Yuan Fan
    Peter Chang-Yi Weng
    Eric King-wah Chu
    BIT Numerical Mathematics, 2014, 54 : 147 - 169
  • [2] Refining estimates of invariant and deflating subspaces for large and sparse matrices and pencils
    Fan, Hung-Yuan
    Weng, Peter Chang-Yi
    Chu, Eric King-wah
    BIT NUMERICAL MATHEMATICS, 2014, 54 (01) : 147 - 169
  • [3] A class of marked invariant subspaces with an application to algebraic Riccati equations
    Astuti, Pudji
    Wimmer, Harald K.
    AUTOMATICA, 2006, 42 (09) : 1503 - 1506
  • [4] Deflating subspaces of T-palindromic pencils and algebraic T-Riccati equations
    Iannazzo, Bruno
    Meini, Beatrice
    Poloni, Federico
    LINEAR & MULTILINEAR ALGEBRA, 2024,
  • [5] Numerical Study on Nonsymmetric Algebraic Riccati Equations
    Changfeng Ma
    Huaize Lu
    Mediterranean Journal of Mathematics, 2016, 13 : 4961 - 4973
  • [6] Numerical Study on Nonsymmetric Algebraic Riccati Equations
    Ma, Changfeng
    Lu, Huaize
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4961 - 4973
  • [7] A new class of nonsymmetric algebraic Riccati equations
    Guo, Chun-Hua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 636 - 649
  • [8] On the iterative solution of a class of nonsymmetric algebraic Riccati equations
    Guo, CH
    Laub, AJ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 22 (02) : 376 - 391
  • [9] A Parameterized Class of Complex Nonsymmetric Algebraic Riccati Equations
    Dong, Liqiang
    Li, Jicheng
    Liu, Xuenian
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (03): : 650 - 691
  • [10] NUMERICAL SOLUTION OF PROJECTED ALGEBRAIC RICCATI EQUATIONS
    Benner, Peter
    Stykel, Tatjana
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 581 - 600