Mobile Robot 6D Pose Estimation Using a Wireless Localization Network

被引:0
|
作者
Dobrev, Yassen [1 ]
Reustle, Christoph [1 ]
Pavlenko, Tatiana [1 ]
Cordes, Florian [2 ]
Vossiek, Martin [1 ]
机构
[1] Friedrich Alexander Univ Erlangen NurnbergFAU, Inst Microwaves & Photon LHFT, Erlangen, Germany
[2] DFKI GmbH, Robot Innovat Ctr, Bremen, Germany
关键词
wireless localization; 6D pose estimation; secondary radar; sensor fusion;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Global navigation satellite systems (GNSS) are widely used for localization on Earth, but are not available on other planets, so that robotic planetary exploration missions need to use alternative methods for localization. This paper presents a wireless localization network (WLN) for estimating the 3D position and 3D orientation of a mobile robot. It consists of at least one reference 24 GHz radar node with known pose, and a mobile node on the robot. The reference nodes can determine the distance and both spatial angles to the mobile robot (thus locating it in 3D) using round-trip time of flight measurements and digital beamforming. We use an extended Kalman filter (EKF) to fuse these results with the readings from the mobile node, and an inclinometer to determine the complete 6D pose of the mobile robot. Measurements in a realistic scenario prove the feasibility of the proposed concept.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] DualPoseNet: Category-level 6D Object Pose and Size Estimation Using Dual Pose Network with Refined Learning of Pose Consistency
    Lin, Jiehong
    Wei, Zewei
    Li, Zhihao
    Xu, Songcen
    Jia, Kui
    Li, Yuanqing
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3540 - 3549
  • [42] Binocular vision object 6D pose estimation based on circulatory neural network
    Yang H.
    Li Z.
    Kang Z.-Y.
    Tian B.
    Dong Q.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (11): : 2179 - 2187
  • [43] DCL-Net: Deep Correspondence Learning Network for 6D Pose Estimation
    Li, Hongyang
    Lin, Jiehong
    Jia, Kui
    COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 : 369 - 385
  • [44] 6D Object Pose Estimation Using a Particle Filter With Better Initialization
    Lee, Gijae
    Kim, Jun-Sik
    Kim, Seungryong
    Kim, Kanggeon
    IEEE ACCESS, 2023, 11 : 11451 - 11462
  • [45] DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation
    Jin, Lei
    Wang, Xiaojuan
    He, Mingshu
    Wang, Jingyue
    SENSORS, 2021, 21 (05) : 1 - 15
  • [46] Lightweight Full-Flow Bidirectional Fusion Network for 6D Pose Estimation
    Lin, Haotian
    Li, Yongchang
    Jiang, Jing
    Qin, Guangjun
    Computer Engineering and Applications, 2024, 60 (22) : 282 - 291
  • [47] PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes
    Xiang, Yu
    Schmidt, Tanner
    Narayanan, Venkatraman
    Fox, Dieter
    ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [48] Occluded object 6D pose estimation using foreground probability compensation
    Ren, Meihui
    Jia, Junying
    Lu, Xin
    IET COMPUTER VISION, 2024, 18 (08) : 1325 - 1337
  • [49] 6D Object Pose Estimation Using Keypoints and Part Affinity Fields
    Zappel, Moritz
    Bultmann, Simon
    Behnke, Sven
    ROBOT WORLD CUP XXIV, ROBOCUP 2021, 2022, 13132 : 78 - 90
  • [50] Robust 6D Pose Estimation Using Dual Active Marker System
    Choi, Hyeon-Ju
    Kim, Yeong-Bin
    Park, Bum Yong
    Lee, Dong-Hyun
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2025, 23 (02) : 382 - 391