Impact and tensile energies of fracture in polymer-clay nanocomposites

被引:30
|
作者
Chen, Biqiong [2 ]
Evans, Julian R. G. [1 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
[2] Trinity Coll Dublin, Dept Mech & Mfg Engn, Coll Green, Dublin 2, Ireland
基金
英国工程与自然科学研究理事会;
关键词
Toughness; Energy absorption; Nanocomposites;
D O I
10.1016/j.polymer.2008.09.024
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Impact strength and tensile energy absorption of polymer-clay nanocomposites were measured using polymers that are glassy or rubbery at ambient temperatures. The results highlight the apparent contradictions that arise in these tests. Polystyrene, with initially low toughness, suffered a decrease in impact strength of 3% (notched) and 23% (un-notched) but the tensile energy at break increased by 120%. ABS suffered a catastrophic collapse of toughness in all three tests of up to 90%. A suggestion is that the arrangement of comparatively rigid mineral tactoids inhibits the toughening function of the rubbery zones. The use of poly(epsilon-caprolactone) showed that processing-induced degradation of surfactant did not significantly impair toughness. There is an emerging view that clay reinforcement is more effective with polymers above T-g but these results suggest that the interpretation of impact strength, a property highly rated by industrial users, is less easily explained. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5113 / 5118
页数:6
相关论文
共 50 条
  • [41] Polymer-clay nanocomposites prepared via in situ emulsion polymerization
    Sedlakova, Zdenka
    Plestil, Josef
    Baldrian, Josef
    Slouf, Miroslav
    Holub, Pavel
    POLYMER BULLETIN, 2009, 63 (03) : 365 - 384
  • [42] Influence of aspect ratio on barrier properties of polymer-clay nanocomposites
    Lu, CS
    Mai, YW
    PHYSICAL REVIEW LETTERS, 2005, 95 (08)
  • [43] Polymer-clay nanocomposites for the removal of trichlorophenol and trinitrophenol from water
    Ganigar, Ronit
    Rytwo, Giora
    Gonen, Yotam
    Radian, Adi
    Mishael, Yael G.
    APPLIED CLAY SCIENCE, 2010, 49 (03) : 311 - 316
  • [44] Polymer-clay nanocomposites prepared in supercritical carbon dioxide.
    Garcia-Leiner, M
    Lesser, AJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U668 - U668
  • [45] In situ synthesis of polymer-clay nanocomposites from silicate gels
    Carrado, KA
    Xu, LQ
    CHEMISTRY OF MATERIALS, 1998, 10 (05) : 1440 - 1445
  • [46] Hydrothermal Synthesis of Magnesium Silicate Montmorillonite for Polymer-Clay Nanocomposites
    O. Yu. Golubeva
    E. N. Korytkova
    V. V. Gusarov
    Russian Journal of Applied Chemistry, 2005, 78 : 26 - 32
  • [47] To the nanoscale, and beyond! Multiscale molecular modeling of polymer-clay nanocomposites
    Scocchi, Giulio
    Posocco, Paola
    Danani, Andrea
    Pricl, Sabrina
    Fermeglia, Maurizio
    FLUID PHASE EQUILIBRIA, 2007, 261 (1-2) : 366 - 374
  • [48] Reactive block copolymers as versatile compatibilizers for polymer-clay nanocomposites
    Flores-Santos, L.
    Gonzalez-Montiel, A.
    Baeza-Alvarado, M. D.
    Espinoza-Rodriguez, E.
    Esparza-Hernandez, P.
    NSTI NANOTECH 2008, VOL 2, TECHNICAL PROCEEDINGS: LIFE SCIENCES, MEDICINE, AND BIO MATERIALS, 2008, : 755 - +
  • [49] Ion transport model in exfoliated and intercalated polymer-clay nanocomposites
    Shukla, Namrata
    Thakur, Awalendra K.
    SOLID STATE IONICS, 2010, 181 (19-20) : 921 - 932
  • [50] Power ultrasound effects for in situ compatibilization of polymer-clay nanocomposites
    Ryu, JG
    Park, SW
    Kim, H
    Lee, JW
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2004, 24 (1-2): : 285 - 288