Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models

被引:40
|
作者
Rodriguez-Fernandez, P. [1 ]
White, A. E. [1 ]
Howard, N. T. [1 ]
Grierson, B. A. [2 ]
Staebler, G. M. [3 ]
Rice, J. E. [1 ]
Yuan, X. [2 ]
Cao, N. M. [1 ]
Creely, A. J. [1 ]
Greenwald, M. J. [1 ]
Hubbard, A. E. [1 ]
Hughes, J. W. [1 ]
Irby, J. H. [1 ]
Sciortino, F. [1 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
[3] Gen Atom, POB 85608, San Diego, CA 92186 USA
关键词
ELECTRON HEAT-TRANSPORT; BEHAVIOR;
D O I
10.1103/PhysRevLett.120.075001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Energy transport analysis of NSTX plasmas with the TGLF turbulent and NEO neoclassical transport models
    Avdeeva, G.
    Thome, K. E.
    Smith, S. P.
    Battaglia, D. J.
    Clauser, C. F.
    Guttenfelder, W.
    Kaye, S. M.
    Mcclenaghan, J.
    Meneghini, O.
    Odstrcil, T.
    Staebler, G.
    NUCLEAR FUSION, 2023, 63 (12)
  • [32] Impurity transport studies in tokamak edge plasmas using visible imaging
    Gangadhara, S
    LaBombard, B
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, 30 (01) : 76 - 77
  • [33] Characterization of intermittency of impurity turbulent transport in tokamak edge plasmas (vol 15, art no 072506, 2008)
    Futatani, S.
    Benkadda, S.
    Nakamura, Y.
    Kondo, K.
    PHYSICS OF PLASMAS, 2008, 15 (12)
  • [34] Comparison of turbulent transport models of L- and H-mode plasmas
    Honda, M.
    Fukuyama, A.
    NUCLEAR FUSION, 2006, 46 (05) : 580 - 593
  • [35] Multiscale gyrokinetics for rotating tokamak plasmas: II. Reduced models for electron dynamics
    Abel, I. G.
    Cowley, S. C.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [36] Asymptotic behavior, non-local dynamics, and data assimilation tailoring of the reduced κ-ε model to address turbulent transport of fusion plasmas
    Auroux, D.
    Ghendrih, P.
    Lamerand, L.
    Rapetti, F.
    Serre, E.
    PHYSICS OF PLASMAS, 2022, 29 (10)
  • [37] Surrogate model of turbulent transport in fusion plasmas using machine learning
    Li, H.
    Wang, L.
    Fu, Y. L.
    Wang, Z. X.
    Wang, T. B.
    Li, J. Q.
    NUCLEAR FUSION, 2025, 65 (01)
  • [38] Study of turbulent transport in magnetized plasmas with flow using symplectic maps
    Torres, Jorge
    Martinell, Julio J.
    CHAOS, 2023, 33 (05)
  • [39] Fast modeling of turbulent transport in fusion plasmas using neural networks
    van de Plassche, K. L.
    Citrin, J.
    Bourdelle, C.
    Camenen, Y.
    Casson, F. J.
    Dagnelie, V., I
    Felici, F.
    Ho, A.
    Van Mulders, S.
    PHYSICS OF PLASMAS, 2020, 27 (02)
  • [40] Local transport barrier formation and relaxation in reverse-shear plasmas on the tokamak fusion test reactor
    Synakowski, EJ
    Batha, SH
    Beer, MA
    Bell, MG
    Bell, RE
    Budny, RV
    Bush, CE
    Efthimion, PC
    Hahm, TS
    Hammett, GW
    LeBlanc, B
    Levinton, F
    Mazzucato, E
    Park, H
    Ramsey, AT
    Schmidt, G
    Rewoldt, G
    Scott, SD
    Taylor, G
    Zarnstorff, MC
    PHYSICS OF PLASMAS, 1997, 4 (05) : 1736 - 1744