Quantum Computation with Abelian Anyons

被引:18
|
作者
Lloyd, Seth [1 ]
机构
[1] MIT 3 160, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
quantum computing; fault tolerance; topological quantum computing;
D O I
10.1023/A:1019649101654
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A universal quantum computer can be constructed using abelian anyons. Two qubit quantum logic gates such as controlled-NOT operations are performed using topological effects. Single-anyon operations such as hopping from site to site on a lattice suffice to perform all quantum logic operations. Anyonic quantum computation might be realized using quasiparticles of the fractional quantum Hall effect.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 50 条
  • [21] Isolating Kondo anyons for topological quantum computation
    Komijani, Yashar
    PHYSICAL REVIEW B, 2020, 101 (23)
  • [22] Universal quantum computation with weakly integral anyons
    Cui, Shawn X.
    Hong, Seung-Moon
    Wang, Zhenghan
    QUANTUM INFORMATION PROCESSING, 2015, 14 (08) : 2687 - 2727
  • [23] Fibonacci Anyons From Abelian Bilayer Quantum Hall States
    Vaezi, Abolhassan
    Barkeshli, Maissam
    PHYSICAL REVIEW LETTERS, 2014, 113 (23)
  • [24] Entanglement spectroscopy of non-Abelian anyons: Reading off quantum dimensions of individual anyons
    Cornfeld, Eyal
    Landau, L. Aviad
    Shtengel, Kirill
    Sela, Eran
    PHYSICAL REVIEW B, 2019, 99 (11)
  • [25] Realization of quantum secure direct communication by Kitaev Abelian anyons
    Shen, Yao
    Zhou, Chi-Chun
    Zhang, Fu-Lin
    PHYSICS LETTERS A, 2024, 525
  • [26] Braid matrices and quantum gates for Ising anyons topological quantum computation
    Z. Fan
    H. de Garis
    The European Physical Journal B, 2010, 74 : 419 - 427
  • [27] Braid matrices and quantum gates for Ising anyons topological quantum computation
    Fan, Z.
    de Garis, H.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 74 (03): : 419 - 427
  • [28] Effective models of doped quantum ladders of non-Abelian anyons
    Soni, Medha
    Troyer, Matthias
    Poilblanc, Didier
    PHYSICAL REVIEW B, 2016, 93 (03)
  • [29] Homological codes and abelian anyons
    Vrana, Peter
    Farkas, Mate
    REVIEWS IN MATHEMATICAL PHYSICS, 2019, 31 (10)
  • [30] Fault-Tolerant Quantum Error Correction for non-Abelian Anyons
    Guillaume Dauphinais
    David Poulin
    Communications in Mathematical Physics, 2017, 355 : 519 - 560