High-breakdown robust multivariate methods

被引:224
|
作者
Hubert, Mia [1 ,2 ]
Rousseeuw, Peter J. [3 ]
Van Aelst, Stefan [4 ]
机构
[1] Katholieke Univ Leuven, Univ Ctr Stat, B-3001 Heverlee, Belgium
[2] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
[3] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
[4] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
关键词
breakdown value; influence function; multivariate statistics; outliers; partial least squares; principal components; regression; robustness;
D O I
10.1214/088342307000000087
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When applying a statistical method in practice it often occurs that some observations deviate from the usual assumptions. However, many classical methods are sensitive to outliers. The goal of robust statistics is to develop methods that are robust against the possibility that one or several unannounced outliers may occur anywhere in the data. These methods then allow to detect outlying observations by their residuals from a robust fit. We focus on high-breakdown methods, which can deal with a substantial fraction of outliers in the data. We give an overview of recent high-breakdown robust methods for multivariate settings such as covariance estimation, multiple and multivariate regression, discriminant analysis, principal components and multivariate calibration.
引用
收藏
页码:92 / 119
页数:28
相关论文
共 50 条
  • [31] AlGaN/GaN Heterojunction FETs for High-Breakdown and Low-Leakage Operation
    Kuzuhara, Masaaki
    Tokuda, Hirokuni
    GALLIUM NITRIDE AND SILICON CARBIDE POWER TECHNOLOGIES 2, 2012, 50 (03): : 139 - 142
  • [32] HIGH BREAKDOWN REGRESSION AND MULTIVARIATE ESTIMATION
    HAWKINS, DM
    SIMONOFF, JS
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1993, 42 (02) : 423 - 432
  • [33] InAlAs/InGaAs doped channel heterostructure for high-linearity, high-temperature and high-breakdown operations
    Chen, YJ
    Hsu, WC
    Chen, YW
    Lin, YS
    Hsu, RT
    Wu, YH
    SOLID-STATE ELECTRONICS, 2005, 49 (02) : 163 - 166
  • [34] ROBUST METHODS IN THE ASSESSMENT OF MULTIVARIATE NORMALITY
    MATTHEWS, JNS
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1984, 33 (03) : 272 - 277
  • [35] Robust methods for multivariate data analysis
    Moller, S. Frosch
    von Frese, J.
    Bro, R.
    JOURNAL OF CHEMOMETRICS, 2005, 19 (10) : 549 - 563
  • [36] Diagnostic plots for robust multivariate methods
    Pison, G
    Van Aelst, S
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (02) : 310 - 329
  • [37] PLANAR DEVICE TECHNIQUE FOR HIGH-BREAKDOWN VOLTAGE BY H2O2 TREATMENT
    KAJIWARA, Y
    NAGAI, S
    YUKIMOTO, Y
    SHIMIZU, J
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1978, 61 (02): : 81 - 87
  • [38] Applications of InGaP "Insulator" for High-Breakdown and Low-Offset Voltage Heterostructure Bipolar Transistor
    Cheng, Shiou-Ying
    Liu, Wen-Chau
    Chang, Wen-Lung
    Wang, Wei-Chou
    Pan, Hsi-Jean
    Chen, Jing-Yuh
    Thei, Kong-Beng
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2000, 39 (01) : 359 - 360
  • [39] Robust methods for multivariate analysis - A tutorial review
    Liang, YZ
    Kvalheim, OM
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1996, 32 (01) : 1 - 10
  • [40] Robust methods for analysing multivariate failure times
    Lancar, R
    REVUE D EPIDEMIOLOGIE ET DE SANTE PUBLIQUE, 1999, 47 (03): : 287 - 296