A new multi-objective optimization method for master production scheduling problems based on genetic algorithm

被引:15
|
作者
Soares, Marcio M. [2 ]
Vieira, Guilherme E. [1 ]
机构
[1] Pontificia Univ Catolica Parana, Parque Tecnol Ind Engn Dept, BR-80215901 Curitiba, Parana, Brazil
[2] IBRATEC Ind Brasileira Artefatos Tecn Ltda, Curitiba, Parana, Brazil
关键词
Master production scheduling; Genetic algorithms; Optimization; Design of experiments; MULTILEVEL; SOLVE;
D O I
10.1007/s00170-008-1481-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In an environment of global competition, the success of a manufacturing corporation is directly related to the optimization level of its processes in general, but, in particular, to how it plans and executes production. In this context, the master production schedule (MPS) is the key activity for success. In this paper, as in most industries worldwide, the creation of an MPS considers conflicting objectives, such as maximization of service levels, efficient use of resources, and minimization of inventory levels. Unfortunately, the complexity and effort demanded for the creation of a master plan grows rapidly as the production scenario increases, especially when resources are limited, which is the case for most industries. Due to such complexity, industries usually use simple heuristics implemented in spreadsheets that provide a quick plan, but can compromise efficiency and costs. Fortunately, researchers are often proposing new ideas to improve production planning, such as use of artificial intelligence-based heuristics. This work presents the development and use of genetic algorithm (GA) to MPS problems, something that does not seem to have been done so far. It proposes a new genetic algorithm structure, and describes the multi-objective fitness function used, the set of possible individual selection techniques, and the adjustment values for the crossover and mutation operators. The GA developed was applied to two manufacturing scenarios and the most important parameters for the configuration of the GA were identified. This research shows that the use of genetic algorithms is a viable technique for MPS problems; however, its applicability is still heavily dependent on the size of the manufacturing scenario.
引用
收藏
页码:549 / 567
页数:19
相关论文
共 50 条
  • [41] A Multi-Objective Optimization Scheduling Method Based on the Ant Colony Algorithm in Cloud Computing
    Zuo, Liyun
    Shu, Lei
    Dong, Shoubin
    Zhu, Chunsheng
    Hara, Takahiro
    IEEE ACCESS, 2015, 3 : 2687 - 2699
  • [42] Multi-objective boxing match algorithm for multi-objective optimization problems
    Tavakkoli-Moghaddam, Reza
    Akbari, Amir Hosein
    Tanhaeean, Mehrab
    Moghdani, Reza
    Gholian-Jouybari, Fatemeh
    Hajiaghaei-Keshteli, Mostafa
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [43] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [44] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    Soft Computing, 2017, 21 : 5883 - 5891
  • [46] BSTBGA: A hybrid genetic algorithm for constrained multi-objective optimization problems
    Li, Xiang
    Du, Gang
    COMPUTERS & OPERATIONS RESEARCH, 2013, 40 (01) : 282 - 302
  • [47] A robust scheduling method based on a multi-objective immune algorithm
    Zuo, Xingquan
    Mo, Hongwei
    Wu, Jianping
    INFORMATION SCIENCES, 2009, 179 (19) : 3359 - 3369
  • [48] A Modified micro Genetic Algorithm for undertaking Multi-Objective Optimization Problems
    Tan, Choo Jun
    Lim, Chee Peng
    Cheah, Yu-N
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2013, 24 (03) : 483 - 495
  • [49] THE SOLUTION OF MULTI-OBJECTIVE FUZZY OPTIMIZATION PROBLEMS USING GENETIC ALGORITHM
    Kelesoglu, Omer
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2006, 24 (02): : 102 - 108
  • [50] Parallel Distributed Genetic Algorithm for Expensive Multi-Objective Optimization Problems
    Szlachcic, Ewa
    Zubik, Waldemar
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2009, 2009, 5717 : 938 - +