From projective to Euclidean reconstruction

被引:29
|
作者
Devernay, F [1 ]
Faugeras, O [1 ]
机构
[1] INRIA SOPHIA ANTIPOLIS,F-06902 SOPHIA ANTIPOLIS,FRANCE
关键词
D O I
10.1109/CVPR.1996.517084
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页码:264 / 269
页数:6
相关论文
共 50 条
  • [31] Untwisting a projective reconstruction
    Nistér, D
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 60 (02) : 165 - 183
  • [32] Some Results on Minimal Euclidean Reconstruction from Four Points
    Long Quan
    Bill Triggs
    Bernard Mourrain
    Journal of Mathematical Imaging and Vision, 2006, 24 : 341 - 348
  • [33] Some results on minimal euclidean reconstruction from four points
    Quan, L
    Triggs, B
    Mourrain, B
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 24 (03) : 341 - 348
  • [34] Isometric embeddings of real projective spaces into Euclidean spaces
    Zhang, Yongsheng
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2009, 27 (01) : 100 - 103
  • [35] NON-EUCLIDEAN MOTIONS IN PROJECTIVE MATRIX SPACES
    SCHWARZ, B
    ZAKS, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 137 : 351 - 361
  • [36] Split quaternions and semi-Euclidean projective spaces
    Ata, Erhan
    Yayli, Yusuf
    CHAOS SOLITONS & FRACTALS, 2009, 41 (04) : 1910 - 1915
  • [37] ON THE PROJECTIVE INVARIANCE OF SHAKY STRUCTURES IN EUCLIDEAN-SPACE
    WEGNER, B
    ACTA MECHANICA, 1984, 53 (3-4) : 163 - 171
  • [38] Reconstruction of smeared spectral functions from Euclidean correlation functions
    Bailas, Gabriela
    Hashimoto, Shoji
    Ishikawa, Tsutomu
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2020, 2020 (04):
  • [39] Camera calibration and Euclidean reconstruction from known observer translations
    Pajdla, T
    Hlavac, V
    1998 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1998, : 421 - 426
  • [40] Euclidean reconstruction from translational motion using multiple cameras
    Hammarstedt, P
    Heyden, A
    FIFTH INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND MODELING, PROCEEDINGS, 2005, : 352 - 359