Tsallis entropy in scale-spaces

被引:8
|
作者
Tanaka, M [1 ]
Watanabe, T [1 ]
Mishima, T [1 ]
机构
[1] Electrotech Lab, Tsukuba, Ibaraki 3058568, Japan
来源
VISION GEOMETRY VIII | 1999年 / 3811卷
关键词
scale-space; Renyi entropy; Tsallis entropy; scale selection;
D O I
10.1117/12.364102
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently an interesting image analysis by scale-space method is given by Sporring and Weickert.(20) They considered Renyi entropy at each scale to estimate the extents of the lighter pattern and the darker pattern in a given image. On the other hand, there is another generalized entropy such as Tsallis entropy, which has a physical meaning like Boltzmann entropy and is also famous for its usefulness in physics. In this paper, after giving a brief review of Tsallis entropy, we adopt Tsallis entropy as an information measure at each level for the scale-space method to elucidate what the difference between Renyi entropy and Tsallis entropy causes in result. It is also shown that Tsallis entropy is a more natural information measure than Renyi entropy.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 50 条
  • [41] Conditional Tsallis Entropy
    Manije, Sanei Tabass
    Gholamreza, Mohtashami Borzadaran
    Mohammad, Amini
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2013, 13 (02) : 37 - 42
  • [42] Tsallis Entropy and Hyperbolicity
    Kalogeropoulos, Nikos
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1784 - 1786
  • [43] Is the Tsallis entropy stable?
    Lutsko, J. F.
    Boon, J. P.
    Grosfils, P.
    EPL, 2009, 86 (04)
  • [44] Property of Tsallis entropy and principle of entropy increase
    Jiulin, Du
    BULLETIN OF THE ASTRONOMICAL SOCIETY OF INDIA, 2007, 35 (04): : 691 - 696
  • [45] The Tsallis entropy and the Shannon entropy of a universal probability
    Tadaki, Kohtaro
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 2111 - 2115
  • [46] Tsallis Entropy for Geometry Simplification
    Castello, Pascual
    Gonzalez, Carlos
    Chover, Miguel
    Sbert, Mateu
    Feixas, Miquel
    ENTROPY, 2011, 13 (10) : 1805 - 1828
  • [47] Special Issue: Tsallis Entropy
    Anastasiadis, Anastasios
    ENTROPY, 2012, 14 (02): : 174 - 176
  • [48] Diffusive mixing and Tsallis entropy
    O'Malley, Daniel
    Vesselinov, Velimir V.
    Cushman, John H.
    PHYSICAL REVIEW E, 2015, 91 (04):
  • [49] The Burg problem and Tsallis' entropy
    Pintarelli, MB
    Mesón, AM
    Vericat, F
    PHYSICS LETTERS A, 1999, 257 (3-4) : 145 - 148
  • [50] Inflation based on the Tsallis entropy
    Teimoori, Zeinab
    Rezazadeh, Kazem
    Rostami, Abasat
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (01):