共 50 条
Optimal conditions for L∞-regularity and a priori estimates for semilinear elliptic systems
被引:4
|作者:
Li Yuxiang
[1
,2
]
机构:
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
[2] Univ Paris 13, Inst Galilee, Lab Anal Geometrie & Applicat, F-93430 Villetaneuse, France
基金:
中国国家自然科学基金;
关键词:
Elliptic systems;
Optimality;
L-infinity-regularity;
A priori estimates;
Existence;
REACTION-DIFFUSION SYSTEM;
POSITIVE SOLUTIONS;
BLOW-UP;
VARIATIONAL STRUCTURE;
SCHRODINGER OPERATOR;
WEAK SOLUTIONS;
EXISTENCE;
EQUATIONS;
NONEXISTENCE;
BOUNDS;
D O I:
10.1016/j.jmaa.2008.10.013
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we present a bootstrap procedure for semilinear elliptic systems with n (>= 3) components. Combining with the L-p-L-q-estimates, if yields the optimal L-infinity-regularity conditions for the three well known types of weak Solutions: H-0(1)-soultions, L-1-solutions and L-delta(1)-solutions. Thanks to the linear theory in L-delta(p)(Omega), it also yields the optimal conditions for a priori estimates for L-delta(1)-solutions. Based on the a priori estimates, we improve known existence theorems for some classes of elliptic systems. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:257 / 276
页数:20
相关论文