Optimal conditions for L∞-regularity and a priori estimates for semilinear elliptic systems

被引:4
|
作者
Li Yuxiang [1 ,2 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
[2] Univ Paris 13, Inst Galilee, Lab Anal Geometrie & Applicat, F-93430 Villetaneuse, France
基金
中国国家自然科学基金;
关键词
Elliptic systems; Optimality; L-infinity-regularity; A priori estimates; Existence; REACTION-DIFFUSION SYSTEM; POSITIVE SOLUTIONS; BLOW-UP; VARIATIONAL STRUCTURE; SCHRODINGER OPERATOR; WEAK SOLUTIONS; EXISTENCE; EQUATIONS; NONEXISTENCE; BOUNDS;
D O I
10.1016/j.jmaa.2008.10.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a bootstrap procedure for semilinear elliptic systems with n (>= 3) components. Combining with the L-p-L-q-estimates, if yields the optimal L-infinity-regularity conditions for the three well known types of weak Solutions: H-0(1)-soultions, L-1-solutions and L-delta(1)-solutions. Thanks to the linear theory in L-delta(p)(Omega), it also yields the optimal conditions for a priori estimates for L-delta(1)-solutions. Based on the a priori estimates, we improve known existence theorems for some classes of elliptic systems. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:257 / 276
页数:20
相关论文
共 50 条