Friction-Induced, Self-Excited Vibration of a Pantograph-Catenary System

被引:16
|
作者
Qian, W. J. [1 ]
Chen, G. X. [1 ]
Zhang, W. H. [1 ]
Ouyang, H. [2 ]
Zhou, Z. R. [1 ]
机构
[1] Southwest Jiaotong Univ, Tribol Res Inst, State Key Lab Tract Power, Chengdu 610031, Peoples R China
[2] Univ Liverpool, Sch Engn, Liverpool L69 3GH, Merseyside, England
基金
中国国家自然科学基金;
关键词
friction; self-excited vibration; pantograph; catenary; finite element; complex eigenvalue; DYNAMICS; SIMULATION;
D O I
10.1115/1.4023999
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A dynamic model of a pantograph-catenary system is established. In the model, motion of the pantograph is coupled with that of the catenary by friction. Stability of the pantograph-catenary system is studied using the finite element complex eigenvalue method. Numerical results show that there is a strong propensity of self-excited vibration of the pantograph-catenary system when the friction coefficient is greater than 0.1. The dynamic transient analysis results show that the self-excited vibration of the pantograph-catenary system can affect the contact condition between the pantograph and catenary. If the amplitude of the self-excited vibration is strong enough, the contact may even get lost. Parameter sensitivity analysis shows that the coefficient of friction, static lift force, pan-head suspension spring stiffness, tension of contact wire, and the spatial location of pantograph have important influences on the friction-induced, self-excited vibration of the pantograph-catenary system. Bringing the friction coefficient below a certain level and choosing a suitable static lift force can suppress or eliminate the contact loss between the pantograph and catenary.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Sensitivity Analysis of Pantograph-Catenary System Model
    Mahajan, Priya
    Garg, Rachana, Sr.
    Kumar, Parmod
    2012 IEEE 5TH INDIA INTERNATIONAL CONFERENCE ON POWER ELECTRONICS (IICPE 2012), 2012,
  • [22] Study on Characterization and Model of Friction of Sliding Electrical Contact of Pantograph-catenary System
    Chen, Zhonghua
    Sun, Guojun
    Shi, Guang
    Hui, Lichuan
    IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 2312 - 2317
  • [23] Study on electromagnetic force of pantograph-catenary system
    Zhao, Yun-Yun
    Wu, Guang-Ning
    Gao, Guo-Qiang
    Wang, Wan-Gang
    Zhou, Li-Jun
    Tiedao Xuebao/Journal of the China Railway Society, 2014, 36 (10): : 28 - 32
  • [24] Analysis of the friction-induced self-excited vibration of a contact-recording head slider supported by a cantilever beam
    Ono, K
    Suzuki, A
    JOURNAL OF INFORMATION STORAGE AND PROCESSING SYSTEMS, 1999, 1 (01): : 59 - 65
  • [25] FRICTION-INDUCED SELF-EXCITED VIBRATIONS OF DRILL RIG WITH EXPONENTIAL DRAG LAW
    BELOKOBYLSKII, SV
    PROKOPOV, VK
    SOVIET APPLIED MECHANICS, 1982, 18 (12): : 1134 - 1138
  • [26] Electrical Prototype Model of Pantograph-Catenary System
    Garg, Rachana
    Mahajan, Priya
    Kumar, Parmod
    Gupta, Vidushi
    2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC) ASIA-PACIFIC 2014, 2014,
  • [27] Backstepping Controller Design for Pantograph-Catenary System
    Liu, Zhi
    Liu, Yicheng
    Zhou, Ning
    Zou, Dong
    Tu, Haiyan
    3RD INTERNATIONAL CONFERENCE ON AUTOMATION, CONTROL AND ROBOTICS ENGINEERING (CACRE 2018), 2018, 428
  • [28] Hybrid simulation of dynamics for the pantograph-catenary system
    Zhang, WH
    Mei, GM
    Wu, XJ
    Shen, ZY
    VEHICLE SYSTEM DYNAMICS, 2002, 38 (06) : 393 - 414
  • [29] Surrogate modeling of pantograph-catenary system interactions
    Cheng, Yao
    Yan, Jingke
    Zhang, Fan
    Li, Mudi
    Zhou, Ning
    Shi, Changjing
    Jin, Bo
    Zhang, Weihua
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 224
  • [30] On the parametric stability of the pantograph-catenary dynamical system
    Migdalovici, M.
    Baran, Daniela
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2005, 67 (04): : 165 - 172