Strong-field physics with singular light beams

被引:10
|
作者
Zuerch, M. [1 ,2 ]
Kern, C. [1 ,2 ]
Hansinger, P. [1 ,2 ]
Dreischuh, A. [3 ]
Spielmann, Ch [1 ,2 ,4 ]
机构
[1] Univ Jena, Inst Opt & Quantum Elect, D-07743 Jena, Germany
[2] Abbe Ctr Photon, D-07743 Jena, Germany
[3] Univ Sofia, Fac Phys, Dept Quantum Elect, BG-1164 Sofia, Bulgaria
[4] Helmholtzinst Jena, D-07743 Jena, Germany
关键词
HIGH-HARMONIC-GENERATION; OPTICAL VORTEX; SOLITONS; VORTICES; GASES;
D O I
10.1038/NPHYS2397
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Light beams carrying a point singularity with a screw-type phase distribution are associated with an optical vortex. The corresponding momentum flow leads to an orbital angular momentum of the photons(1-3). The study of optical vortices has led to applications such as particle micro-manipulation(4,5), imaging(6), interferometry(7), quantum information8 and high-resolution microscopy and lithography(9). Recent analyses showed that transitions forbidden by selection rules seem to be allowed when using optical vortex beams(10). To exploit these intriguing new applications, it is often necessary to shorten the wavelength by nonlinear frequency conversion. However, during the conversion the optical vortices tend to break up(11-13). Here we show that optical vortices can be generated in the extreme ultraviolet (XUV) region using high-harmonic generation(14,15). The singularity impressed on the fundamental beam survives the highly nonlinear process. Vortices in the XUV region have the same phase distribution as the driving field, which is in contradiction to previous findings(16), where multiplication of the momentum by the harmonic order is expected. This approach opens the way for several applications based on vortex beams in the XUV region.
引用
收藏
页码:743 / 746
页数:4
相关论文
共 50 条
  • [31] Author Correction: Terahertz strong-field physics in light-emitting diodes for terahertz detection and imaging
    Chen Ouyang
    Shangqing Li
    Jinglong Ma
    Baolong Zhang
    Xiaojun Wu
    Wenning Ren
    Xuan Wang
    Dan Wang
    Zhenzhe Ma
    Tianze Wang
    Tianshu Hong
    Peidi Yang
    Zhe Cheng
    Yun Zhang
    Kuijuan Jin
    Yutong Li
    Communications Physics, 4
  • [32] STRONG-FIELD EFFECTS IN COHERENT SATURATION SPECTROSCOPY OF ATOMIC-BEAMS
    ISHIKAWA, J
    RIEHLE, F
    HELMCKE, J
    BORDE, CJ
    PHYSICAL REVIEW A, 1994, 49 (06): : 4794 - 4825
  • [33] Topological strong-field physics on sub-laser-cycle timescale
    Silva, R. E. F.
    Jimenez-Galan, A.
    Amorim, B.
    Smirnova, O.
    Ivanov, M.
    NATURE PHOTONICS, 2019, 13 (12) : 849 - +
  • [34] Electronic dynamics and frequency effects in circularly polarized strong-field physics
    Mauger, F.
    Bandrauk, A. D.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (19)
  • [35] NEW PHYSICS IN COMPOSITE MEDIA - STRONG-FIELD MAGNETOTRANSPORT AND OPTICAL BISTABILITY
    BERGMAN, DJ
    PHYSICA SCRIPTA, 1993, T49B : 655 - 658
  • [36] Topological strong-field physics on sub-laser-cycle timescale
    R. E. F. Silva
    Á. Jiménez-Galán
    B. Amorim
    O. Smirnova
    M. Ivanov
    Nature Photonics, 2019, 13 : 849 - 854
  • [37] Strong-field electrophoresis
    Schnitzer, Ory
    Yariv, Ehud
    JOURNAL OF FLUID MECHANICS, 2012, 701 : 333 - 351
  • [38] Adiabatic elimination in strong-field light-matter coupling
    Kaufman, Brian
    Rozgonyi, Tamas
    Marquetand, Philipp
    Weinacht, Thomas
    PHYSICAL REVIEW A, 2020, 102 (06)
  • [39] Reformulation of the strong-field approximation for light-matter interactions
    Galstyan, A.
    Chuluunbaatar, O.
    Hamido, A.
    Popov, Yu. V.
    Mota-Furtado, F.
    O'Mahony, P. F.
    Janssens, N.
    Catoire, F.
    Piraux, B.
    PHYSICAL REVIEW A, 2016, 93 (02)
  • [40] New strong-field QED effects at extreme light infrastructure
    Dunne, G. V.
    EUROPEAN PHYSICAL JOURNAL D, 2009, 55 (02): : 327 - 340