Surfactant mixtures at the oil-water interface

被引:4
|
作者
Campana, Mario [1 ]
Webster, John R. P. [2 ]
Gutberlet, Thomas [3 ]
Wojciechowski, Kamil [4 ]
Zarbakhsh, Ali [1 ]
机构
[1] Univ London, Sch Biol & Chem Sci, London E1 4NS, England
[2] Rutherford Appleton Lab, Sci & Technol Facil Council, ISIS Pulsed Neutron Facil, Didcot OX11 0QX, Oxon, England
[3] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-14109 Berlin, Germany
[4] Warsaw Univ Technol, Fac Chem, PL-00664 Warsaw, Poland
关键词
Oil-water interface; Azacrown ether; Permeation Liquid Membrane; Palmitic acid; LIQUID-LIQUID INTERFACE; AZACROWN ETHER; FATTY-ACID; NEUTRON REFLECTION; ADSORPTION; SPECIATION;
D O I
10.1016/j.jcis.2013.01.069
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the structural study of mixed monolayers of partially deuterated N,N'-di-hexadecyl-(d(33))-4,13-diaza-18-crown-6 ether (d-ACE16) and palmitic acid (PA) at the oil-water interface, in order to understand the mechanism of metal ion transport through Permeation Liquid Membrane (PLM) devices. The composition of the mixed monolayers remains constant with increasing spread amount and the saturation of the interface is achieved at a relatively low spread amount. The excess PA material is accommodated in the oil phase, playing an important role in equilibrating the interfacial concentration of ACE-16. The presence of PA increases the surface concentration of ACE-16 at low spread amount and facilitates its dissolution into the oil phase at the high spread amount. The result suggests a dynamic exchange between the bulk phase and the interface ensuring a continuous turnover which reflects their relevance in PLM devices. The conclusions regarding the role of a fatty acid in regulating the surface concentration of the alkylated azacrown ether and its dominant role in the bulk transport of metal ions through the membrane are consistent with the results of macroscopic studies reported earlier. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:126 / 133
页数:8
相关论文
共 50 条
  • [41] Hydrodynamics of Particles at an Oil-Water Interface
    Dani, Archit
    Keiser, Geoff
    Yeganeh, Mohsen
    Maldarelli, Charles
    LANGMUIR, 2015, 31 (49) : 13290 - 13302
  • [42] MONOLAYERS OF DIPALMITOYLPHOSPHATIDYLCHOLINE AT THE OIL-WATER INTERFACE
    THOMA, M
    MOHWALD, H
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1995, 95 (2-3) : 193 - 200
  • [43] FLOW BEHAVIOR OF A SURFACTANT OIL-WATER SYSTEM
    OTSUBO, Y
    PRUDHOMME, RK
    COLLOIDS AND SURFACES, 1989, 40 (1-2): : 125 - 136
  • [44] Nanoscale Structure of the Oil-Water Interface
    Fukuto, M.
    Ocko, B. M.
    Bonthuis, D. J.
    Netz, R. R.
    Steinruck, H. -G.
    Pontoni, D.
    Kuzmenko, I.
    Haddad, J.
    Deutsch, M.
    PHYSICAL REVIEW LETTERS, 2016, 117 (25)
  • [45] THE COALESCENCE OF DROPS AT AN OIL-WATER INTERFACE
    GILLESPIE, T
    RIDEAL, EK
    TRANSACTIONS OF THE FARADAY SOCIETY, 1956, 52 (02): : 173 - 183
  • [46] FILM OBSERVATIONS AT AN OIL-WATER INTERFACE
    ACTON, JC
    SAFFLE, RL
    JOURNAL OF FOOD SCIENCE, 1972, 37 (05) : 795 - &
  • [47] Properties of lipids at an oil-water interface
    Pautot, S
    Frisken, BJ
    Cheng, JX
    Xie, SN
    Weitz, DA
    BIOPHYSICAL JOURNAL, 2003, 84 (02) : 510A - 510A
  • [48] Ultrathin dynamic networks formed by the surfactant SPAN 65 at the air-water and oil-water interface
    Rehage, H
    Achenbach, B
    Geest, M
    Siesler, HW
    COLLOID AND POLYMER SCIENCE, 2001, 279 (06) : 597 - 606
  • [49] Theoretical and experimental investigation of the equilibrium oil-water interfacial tensions of solutions containing surfactant mixtures
    Mulqueen, M
    Blankschtein, D
    LANGMUIR, 2002, 18 (02) : 365 - 376
  • [50] Adsorption of Gum Arabic, Egg White Protein, and Their Mixtures at the Oil-Water Interface in Limonene Oil-in-Water Emulsions
    Padala, Shashi R.
    Williams, Peter A.
    Phillips, Glyn O.
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2009, 57 (11) : 4964 - 4973