Reducing the effect of Metropolization on mixing times in molecular dynamics simulations

被引:10
|
作者
Wagoner, Jason A. [1 ]
Pande, Vijay S. [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Struct Biol, Stanford, CA 94305 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2012年 / 137卷 / 21期
基金
美国国家科学基金会;
关键词
CONSTANT-TEMPERATURE SIMULATIONS; MONTE-CARLO ALGORITHM; GSHMC;
D O I
10.1063/1.4769301
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics algorithms are subject to some amount of error dependent on the size of the time step that is used. This error can be corrected by periodically updating the system with a Metropolis criterion, where the integration step is treated as a selection probability for candidate state generation. Such a method, closely related to generalized hybrid Monte Carlo (GHMC), satisfies the balance condition by imposing a reversal of momenta upon candidate rejection. In the present study, we demonstrate that such momentum reversals can have a significant impact on molecular kinetics and extend the time required for system decorrelation, resulting in an order of magnitude increase in the integrated autocorrelation times of molecular variables for the worst cases. We present a simple method, referred to as reduced-flipping GHMC, that uses the information of the previous, current, and candidate states to reduce the probability of momentum flipping following candidate rejection while rigorously satisfying the balance condition. This method is a simple modification to traditional, automatic-flipping, GHMC methods and significantly mitigates the impact of such algorithms on molecular kinetics and simulation mixing times. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769301]
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Simulations by molecular dynamics
    不详
    BIOFUTUR, 2013, (347) : 38 - 38
  • [22] Molecular dynamics simulations
    Binder, K
    Horbach, J
    Kob, W
    Paul, W
    Varnik, F
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (05) : S429 - S453
  • [23] Molecular Dynamics Simulations
    不详
    SCIENCE, 2010, 330 (6011) : 1607 - 1607
  • [24] Molecular dynamics simulations
    Hansson, T
    Oostenbrink, C
    van Gunsteren, WF
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (02) : 190 - 196
  • [25] Molecular Dynamics Simulations
    Habasaki, Junko
    Leon, Carlos
    Ngai, K. L.
    DYNAMICS OF GLASSY, CRYSTALLINE AND LIQUID IONIC CONDUCTORS: EXPERIMENTS, THEORIES, SIMULATIONS, 2017, 132 : 355 - 414
  • [26] Molecular dynamics simulations of the enthalpy of mixing of poly(vinyl chloride) and aliphatic polyester blends
    Lee, S
    Lee, JG
    Lee, H
    Mumby, SJ
    POLYMER, 1999, 40 (18) : 5137 - 5145
  • [27] Quantum molecular dynamics simulations of warm dense lithium hydride: Examination of mixing rules
    Horner, D. A.
    Kress, J. D.
    Collins, L. A.
    PHYSICAL REVIEW B, 2008, 77 (06)
  • [28] MOLECULAR-DYNAMICS SIMULATIONS OF ION-BEAM MIXING EFFECTS OF THE INTERATOMIC FORCES
    MAZZONE, AM
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1992, 170 (02): : 413 - 418
  • [29] Estimation of Drug-Target Residence Times by τ-Random Acceleration Molecular Dynamics Simulations
    Kokh, Daria B.
    Amaral, Marta
    Bomke, Joerg
    Graedler, Ulrich
    Musil, Djordje
    Buchstaller, Hans-Peter
    Dreyer, Matthias K.
    Frech, Matthias
    Lowinski, Maryse
    Vallee, Francois
    Bianciotto, Marc
    Rak, Alexey
    Wade, Rebecca C.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (07) : 3859 - 3869
  • [30] Molecular Dynamics Simulations of Family 7 Cellobiohydrolase Mutants Aimed at Reducing Product Inhibition
    Silveira, Rodrigo L.
    Skaf, Munir S.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (29): : 9295 - 9303