Biomechanical Evaluation and the Assisted 3D Printed Model in the Patient-Specific Preoperative Planning for Thoracic Spinal Tuberculosis: A Finite Element Analysis

被引:6
|
作者
Wang, Bingjin [1 ]
Ke, Wencan [1 ]
Hua, Wenbin [1 ]
Zeng, Xianlin [1 ]
Yang, Cao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Dept Orthopaed, Wuhan, Peoples R China
基金
国家重点研发计划;
关键词
finite element analysis; 3D printed model; thoracic spinal tuberculosis; preoperative planning; spinal fixation; biomechanics; SCREW INSERTION PROCEDURE; LUMBAR INTERBODY FUSION; SURGICAL-TREATMENT; POSTERIOR; INSTRUMENTATION; DEBRIDEMENT; STABILITY; FIXATION; TEMPLATES; PLACEMENT;
D O I
10.3389/fbioe.2020.00807
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Posterior fixation is superior to anterior fixation in the correction of kyphosis and maintenance of spinal stability for the treatment of thoracic spinal tuberculosis. However, the process of selecting the appropriate spinal fixation method remains controversial, and preoperative biomechanical evaluation has not yet been investigated. In this study, we aimed to analyze the application of the assisted finite element analysis (FEA) and the three-dimensional (3D) printed model for the patient-specific preoperative planning of thoracic spinal tuberculosis. An adult patient with thoracic spinal tuberculosis was included. A finite element model of the T7-T11 thoracic spine segments was reconstructed to analyze the biomechanical effect of four different operative constructs. The von Mises stress values of the implants in the vertical axial load and flexion and extension conditions under a 400-N vertical axial pre-load and a 10-N.m moment were calculated and compared. A 3D printed model was used to describe and elucidate the patient's condition and simulate the optimal surgical design. According to the biomechanical evaluation, the patient-specific preoperative surgical design was prepared for implementation. The anterior column, which was reconstructed with titanium alloy mesh and a bone graft with posterior fixation using seven pedicle screws (M+P) and performed at the T7-T11 level, decreased the von Mises stress placed on the right rod, T7 pedicle screw, and T11 pedicle. Moreover, the M+P evaded the left T9 screw without load bearing. The 3D printed model and preoperative surgical simulation enhanced the understanding of the patient's condition and facilitated patient-specific preoperative planning. Good clinical results, including no complication of implants, negligible loss of the Cobb angle, and good bone fusion, were achieved using the M+P surgical design. In conclusion, M+P was recommended as the optimal method for preoperative planning since it enabled the preservation of the normal vertebra and prevented unnecessary internal fixation. Our study indicated that FEA and the assisted 3D printed model are tools that could be extremely useful and effective in the patient-specific preoperative planning for thoracic spinal tuberculosis, which can facilitate preoperative surgical simulation and biomechanical evaluation, as well as improve the understanding of the patient's condition.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Initial Clinical Experience Using 3d Printing And Patient-Specific Airway Stents: Compassionate Use Of 3d Printed Patient-Specific Airway Stents
    Young, B. P.
    Machuzak, M. S.
    Gildea, T. R.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195
  • [42] Dosimetric evaluation of a 3D printed phantom for patient-specific pre-treatment plan verification
    Makris, D. N.
    Zoros, E.
    Boursianis, T.
    Pappas, E.
    Maris, T. G.
    Efstathopoulos, E. P.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S39 - S40
  • [43] Functional 3D Printed Patient-Specific Modeling of Severe Aortic Stenosis
    Maragiannis, Dimitrios
    Jackson, Matthew S.
    Igo, Stephen R.
    Chang, Su Min
    Zoghbi, William A.
    Little, Stephen H.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 64 (10) : 1066 - 1068
  • [44] 3D Printed Patient-Specific Cutting Guide for Anterior Midfoot Tarsectomy
    Dagneaux, Louis
    Canovas, Francois
    FOOT & ANKLE INTERNATIONAL, 2020, 41 (02) : 211 - 215
  • [45] Comparison of Computer-Assisted Navigation and 3D Printed Patient-Specific Template for the Iliosacral Screw Placement
    Wan, Yizhou
    Xue, Peiran
    Yue, Junyi
    Yu, Keda
    Guo, Xiaodong
    Chen, Kaifang
    ORTHOPAEDIC SURGERY, 2023, 15 (11) : 2855 - 2863
  • [46] 3D-printed, patient-specific DIEP flap templates for preoperative planning in breast reconstruction: a prospective case series
    Chae, Michael P.
    Hunter-Smith, David J.
    Chung, Ru Dee
    Smith, Julian A.
    Rozen, Warren Matthew
    GLAND SURGERY, 2021, 10 (07) : 2192 - 2199
  • [47] Quality Control in 3D Printing: Accuracy Analysis of 3D-Printed Models of Patient-Specific Anatomy
    Dorweiler, Bernhard
    Baque, Pia Elisabeth
    Chaban, Rayan
    Ghazy, Ahmed
    Salem, Oroa
    MATERIALS, 2021, 14 (04) : 1 - 13
  • [48] Patient-Specific 3D Printed Models of Aortic Aneurysm and Aortic Dissection
    Sun, Zhonghua
    Squelch, Andrew
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2017, 7 (04) : 886 - 889
  • [49] 3D Printed Patient-Specific Complex Hip Arthroplasty Models Streamline the Preoperative Surgical Workflow: A Pilot Study
    Jiang, Michael
    Coles-Black, Jasamine
    Chen, Gordon
    Alexander, Matthew
    Chuen, Jason
    Hardidge, Andrew
    FRONTIERS IN SURGERY, 2021, 8
  • [50] Simulation and Training of Needle Puncture Procedure with a Patient-Specific 3D Printed Gluteal Artery Model
    Rynio, Pawel
    Falkowski, Aleksander
    Witowski, Jan
    Kazimierczak, Arkadiusz
    Wojcik, Lukasz
    Gutowski, Piotr
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (03)