Dislocation reactions, grain boundaries, and irreversibility in two-dimensional lattices using topological tweezers

被引:60
|
作者
Irvine, William T. M. [1 ,2 ]
Hollingsworth, Andrew D. [3 ]
Grier, David G. [3 ]
Chaikin, Paul M. [3 ]
机构
[1] Univ Chicago, Dept Phys, Chicago, IL 60605 USA
[2] Univ Chicago, James Franck Inst, Chicago, IL 60605 USA
[3] NYU, Dept Phys, Ctr Soft Matter Res, New York, NY 10003 USA
基金
美国国家科学基金会;
关键词
topological defect; colloidal crystal; holographic trapping; COLLOIDAL CRYSTALS; PHASE-TRANSITIONS; 2; DIMENSIONS; CRYSTALLOGRAPHY; MICROSCOPY; PARTICLES; DEFECTS;
D O I
10.1073/pnas.1300787110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dislocations, disclinations, and grain boundaries are topological excitations of crystals that play a key role in determining out-of-equilibrium material properties. In this article we study the kinetics, creation, and annihilation processes of these defects in a controllable way by applying "topological tweezers," an array of weak optical tweezers which strain the lattice by weakly pulling on a collection of particles without grabbing them individually. We use topological tweezers to deterministically control individual dislocations and grain boundaries, and reversibly create and destroy dislocation pairs in a 2D crystal of charged colloids. Starting from a perfect lattice, we exert a torque on a finite region and follow the complete step-by-step creation of a disoriented grain, from the creation of dislocation pairs through their reactions to form a grain boundary and their reduction of elastic energy. However, when the grain is rotated back to its original orientation the dislocation reactions do not retrace. Rather, the process is irreversible; the grain boundary expands instead of collapsing.
引用
收藏
页码:15544 / 15548
页数:5
相关论文
共 50 条
  • [21] Universal Probes of Two-Dimensional Topological Insulators: Dislocation and π Flux
    Juricic, Vladimir
    Mesaros, Andrej
    Slager, Robert-Jan
    Zaanen, Jan
    PHYSICAL REVIEW LETTERS, 2012, 108 (10)
  • [22] Intrinsic Magnetism of Grain Boundaries in Two-Dimensional Metal Dichalcogenides
    Zhang, Zhuhua
    Zou, Xiaolong
    Crespi, Vincent H.
    Yakobson, Boris I.
    ACS NANO, 2013, 7 (12) : 10475 - 10481
  • [23] Grain boundaries in two-dimensional traveling-wave patterns
    Phys D Nonlinear Phenom, 3-4 (250-260):
  • [24] Grain boundaries in two-dimensional traveling-wave patterns
    Sakaguchi, H
    Malomed, B
    PHYSICA D, 1998, 118 (3-4): : 250 - 260
  • [25] STUDIES OF TWO-DIMENSIONAL LATTICES USING FERROFLUID
    SKJELTORP, AT
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1983, 37 (03) : 253 - 256
  • [26] Two-dimensional Shiba lattices as a possible platform for crystalline topological superconductivity
    Soldini, Martina O.
    Kuester, Felix
    Wagner, Glenn
    Das, Souvik
    Aldarawsheh, Amal
    Thomale, Ronny
    Lounis, Samir
    Parkin, Stuart S. P.
    Sessi, Paolo
    Neupert, Titus
    NATURE PHYSICS, 2023, 19 (12) : 1848 - +
  • [27] Two-dimensional Shiba lattices as a possible platform for crystalline topological superconductivity
    Martina O. Soldini
    Felix Küster
    Glenn Wagner
    Souvik Das
    Amal Aldarawsheh
    Ronny Thomale
    Samir Lounis
    Stuart S. P. Parkin
    Paolo Sessi
    Titus Neupert
    Nature Physics, 2023, 19 : 1848 - 1854
  • [28] Experimental Investigation of Topological Phases of Two-Dimensional Floquet Microring Lattices
    Afzal, Shirin
    Zimmerling, Tyler J.
    Ren, Yang
    Perron, David
    Van, Vien
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2020,
  • [29] Observation of topological transformations of optical vortices in two-dimensional photonic lattices
    Bezryadina, Anna
    Neshev, Dragomir N.
    Desyatnikov, Anton S.
    Young, Jack
    Chen, Zhigang
    Kivshar, Yuri S.
    OPTICS EXPRESS, 2006, 14 (18): : 8317 - 8327
  • [30] Emergence of topological phases by stacking of two-dimensional lattices with nonsymmorphic symmetry
    Chiu, Pok-Man
    Huang, Cheng-Yi
    Li, Wan-Ju
    Lee, Ting-Kuo
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (03)