FULLY BAYESIAN TENSOR-BASED REGRESSION

被引:0
|
作者
Camarrone, Flavio [1 ]
Van Hulle, Marc M. [1 ]
机构
[1] Univ Leuven, KU Leuven, Lab Neuro & Psychophysiol, B-3000 Leuven, Belgium
关键词
Bayesian learning; PLS; multilinear regression; NPLS; tensor-based regression;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
N-way (or multiway) Partial Least Squares (NPLS) regression is a successful algorithm for solving ill-conditioned and high-dimensional problems. However, the selection of the latent space dimensionality, when performed manually, becomes a critical issue in the presence of irrelevant, redundant and noisy information and can lead to overfitting, and when using cross-validation one can still not guarantee a good predictive performance. We propose a fully Bayesian N-way partial least squares regression (BNPLS) with an automatic relevance determination (ARD) prior on the factor matrices so that the number of latent components can be determined automatically without requiring specific assumptions. Using synthetic data, we compare the performance of BNPLS with conventional NPLS, standard partial least squared (PLS) and state-of-the-art higher-order PLS (HOPLS). Results show that BNPLS consistently achieves a better or comparable performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Variational Bayesian Tensor Quantile Regression
    Yunzhi Jin
    Yanqing Zhang
    Acta Mathematica Sinica,English Series, 2025, (02) : 733 - 756
  • [32] Tensor-Based Active Appearance Model
    Lee, Hyung-Soo
    Kim, Daijin
    IEEE SIGNAL PROCESSING LETTERS, 2008, 15 : 565 - 568
  • [33] Tensor-based Complementary Product Recommendation
    Entezari, Negin
    Papalexakis, Evangelos E.
    Wang, Haixun
    Rao, Sharath
    Prasad, Shishir Kumar
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 409 - 415
  • [34] Tentris - A Tensor-Based Triple Store
    Bigerl, Alexander
    Conrads, Felix
    Behning, Charlotte
    Sherif, Mohamed Ahmed
    Saleem, Muhammad
    Ngomo, Axel-Cyrille Ngonga
    SEMANTIC WEB - ISWC 2020, PT I, 2020, 12506 : 56 - 73
  • [35] Exploiting Block-Sparsity for Hyperspectral Kronecker Compressive Sensing: A Tensor-Based Bayesian Method
    Zhao, Rongqiang
    Wang, Qiang
    Fu, Jun
    Ren, Luquan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 1654 - 1668
  • [36] Element rearrangement for tensor-based subspace learning
    Yan, Shuicheng
    Xu, Dong
    Lin, Stephen
    Huang, Thomas S.
    Chang, Shih-Fu
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 116 - +
  • [37] Microblogging hyperlink recommendation with tensor-based clustering
    Wang L.
    Gao D.
    Chen C.
    Int. J. Simul. Syst. Sci. Technol., 28 (20.1-20.11): : 20.1 - 20.11
  • [38] Novel Tensor-based Singular Spectrum Decomposition
    Joshi, Spriha
    Dreesen, Philippe
    Bonizzi, Pietro
    Karel, Joel
    Peeters, Ralf
    Bousse, Martijn
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1327 - 1331
  • [39] A tensor-based method for learning ranking functions
    Bu, Shanshan
    Zhen, Ling
    Zhao, Xinbin
    Tan, Junyan
    Zhen, L. (shanbeishan@163.com), 1600, Binary Information Press (10): : 4989 - 4999
  • [40] Tensor-Based Terahertz Compressive Sensing Imaging
    Wang, Wei-Chieh
    Wang, Jou-Chen
    Hung, Yi-Chun
    Yang, Shang-Hua
    Huang, Yuan-Hao
    2021 46TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2021,